Stability results for obstacle problems with measure data
Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 6, pp. 679-704.
@article{AIHPC_2005__22_6_679_0,
     author = {Leone, Chiara},
     title = {Stability results for obstacle problems with measure data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {679--704},
     publisher = {Elsevier},
     volume = {22},
     number = {6},
     year = {2005},
     doi = {10.1016/j.anihpc.2005.03.001},
     mrnumber = {2172856},
     zbl = {02245283},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.001/}
}
TY  - JOUR
AU  - Leone, Chiara
TI  - Stability results for obstacle problems with measure data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
SP  - 679
EP  - 704
VL  - 22
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.001/
DO  - 10.1016/j.anihpc.2005.03.001
LA  - en
ID  - AIHPC_2005__22_6_679_0
ER  - 
%0 Journal Article
%A Leone, Chiara
%T Stability results for obstacle problems with measure data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 679-704
%V 22
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.001/
%R 10.1016/j.anihpc.2005.03.001
%G en
%F AIHPC_2005__22_6_679_0
Leone, Chiara. Stability results for obstacle problems with measure data. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 6, pp. 679-704. doi : 10.1016/j.anihpc.2005.03.001. https://www.numdam.org/articles/10.1016/j.anihpc.2005.03.001/

[1] Attouch H., Picard C., Problemes variationnels et theorie du potential non lineaire, Ann. Faculté Sci. Toùlouse 1 (1979) 89-136. | Numdam | MR | Zbl

[2] Benedetto J.J., Real Variable and Integration, Teubner, Stuttgart, 1976. | MR | Zbl

[3] Benilan L., Boccardo L., Galloüet T., Gariepy R., Pierre M., Vazquez J.L., An L1 theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995) 240-273. | Numdam | Zbl

[4] Boccardo L., Homogenization and continuous dependence for Dirichlet problems in L1, in: Partial Differential Equation Methods in Control and Shape Analysis, Lecture Notes in Pure and Appl. Math., vol. 188, Dekker, New York, 1997, pp. 41-52. | MR | Zbl

[5] L. Boccardo, G.R. Cirmi, Existence and uniqueness of solutions of unilateral problems with L1-data, Manuscript.

[6] Boccardo L., Galloüet T., Problèmes unilatéraux avec données dans L1, C. R. Acad. Sci. Paris Sér. I 311 (1990) 617-619. | MR | Zbl

[7] Boccardo L., Galloüet T., Orsina L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré 13 (1996) 539-551. | Numdam | MR | Zbl

[8] Boccardo L., Murat F., Homogenization of nonlinear unilateral problems, in: Composite media and homogenization theory, Progr. Nonlinear Differential Equations Appl., vol. 5, Birkhäuser Boston, Boston, 1991, pp. 81-105. | MR | Zbl

[9] Boccardo L., Murat F., Nouveaux résultats de convergence dans des problèmes unilateraux, in: Nonlinear Partial Differential Equations and their Applications (Collège de France seminar), Pitman Res. Notes Math., vol. 60, 1962, pp. 64-85. | MR | Zbl

[10] Casado Diaz J., Dal Maso G., A weak notion of convergence in capacity with applications to thin obstacle problems, in: Calculus of Variation and Related Topics (Proceedings Haifa, Israel), Pitman Res. Notes Math. Ser., 1999. | Zbl

[11] Chiadò Piat V., Defranceschi A., Asymptotic behaviour of quasi-linear problems with Neumann boundary conditions on perforated domains, Appl. Anal. 36 (1990) 65-87. | MR | Zbl

[12] R. Cirmi, Convergence of the solutions of nonlinear obstacle problems with L1-data, Manuscript, 1999.

[13] Dall'Aglio P., Leone C., Obstacle problems with measure data and linear operators, Potential Anal. 17 (2002) 45-64. | MR | Zbl

[14] Dal Maso G., On the integral representation of certain local functionals, Ricerche Mat. 32 (1983) 85-113. | MR | Zbl

[15] Dal Maso G., Some necessary and sufficient conditions for the convergence of sequences of unilateral convex sets, J. Funct. Anal. 62 (1985) 119-159. | MR | Zbl

[16] Dal Maso G., Defranceschi A., Convergence of unilateral problems for monotone operators, J. Anal. Mat. 53 (1989) 269-289. | MR | Zbl

[17] Del Vecchio T., On the homogenization of a class of pseudomonotone operators in divergence form, Boll. Un. Mat. Ital. 7 (1991) 369-388. | MR | Zbl

[18] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and their Applications, Academic Press, New York, 1980. | MR | Zbl

[19] Leone C., Existence and uniqueness of solutions for nonlinear obstacle problems with measure data, Nonlinear Anal. 43 (2000) 199-215. | MR | Zbl

[20] Leone C., On a class of nonlinear obstacle problems with measure data, Commun. Partial Differential Equations 25 (2000) 2259-2286. | MR | Zbl

[21] Leone C., Porretta A., Entropy solutions for nonlinear elliptic equations in L1, Nonlinear Anal. 32 (1998) 325-334. | MR | Zbl

[22] Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. | MR | Zbl

[23] Mosco U., Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969) 510-585. | MR | Zbl

[24] L. Tartar, Cours Peccot au Collège de France, Paris 1977.

Cité par Sources :