Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications
Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 5, pp. 667-677.
@article{AIHPC_2005__22_5_667_0,
     author = {Lions, Pierre-Louis and Souganidis, Panagiotis E.},
     title = {Homogenization of degenerate second-order {PDE} in periodic and almost periodic environments and applications},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {667--677},
     publisher = {Elsevier},
     volume = {22},
     number = {5},
     year = {2005},
     doi = {10.1016/j.anihpc.2004.10.009},
     mrnumber = {2171996},
     zbl = {02235973},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/}
}
TY  - JOUR
AU  - Lions, Pierre-Louis
AU  - Souganidis, Panagiotis E.
TI  - Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
SP  - 667
EP  - 677
VL  - 22
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/
DO  - 10.1016/j.anihpc.2004.10.009
LA  - en
ID  - AIHPC_2005__22_5_667_0
ER  - 
%0 Journal Article
%A Lions, Pierre-Louis
%A Souganidis, Panagiotis E.
%T Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 667-677
%V 22
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/
%R 10.1016/j.anihpc.2004.10.009
%G en
%F AIHPC_2005__22_5_667_0
Lions, Pierre-Louis; Souganidis, Panagiotis E. Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 5, pp. 667-677. doi : 10.1016/j.anihpc.2004.10.009. https://www.numdam.org/articles/10.1016/j.anihpc.2004.10.009/

[1] Arisawa M., Quasi-periodic homogenizations for second-order Hamilton-Jacobi-Bellman equations, Adv. Math. Sci. Appl. 11 (2001) 465-480. | MR | Zbl

[2] Arisawa M., Lions P.-L., On ergodic stochastic control, Comm. Partial Differential Equations 23 (1998) 2187-2217. | MR | Zbl

[3] Barles G., A weak Bernstein method for fully nonlinear elliptic equations, Differential Integral Equations 4 (1991) 241-262. | MR | Zbl

[4] Bensoussan A., Blakenship G., Controlled diffusions in a random medium, Stochastics 24 (1988) 87-120. | MR | Zbl

[5] Bhattacharya K., Cracium B., Homogenization of a Hamilton-Jacobi equation associated with the geometric motion of an interface, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 773-805. | MR | Zbl

[6] Bourgeat A., Piatniski A., Approximations of effective coefficients in stochastic homogenization, Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 153-165. | Numdam | MR | Zbl

[7] Cabre X., Caffarelli L.A., Fully nonlinear elliptic partial differential equations, Amer. Math. Soc., 1997.

[8] Caffarelli L.A., A note on nonlinear homogenization, Comm. Pure Appl. Math. 52 (1999) 829-838. | MR | Zbl

[9] L.A. Caffarelli, P.-L., Lions, P.E. Souganidis, in preparation.

[10] Caffarelli L.A., Souganidis P.E., Wang L., Stochastic homogenization for fully nonlinear, second-order partial differential equations, Comm. Pure Appl. Math. LVII (2005) 319-361. | MR | Zbl

[11] Castell F., Homogenization of random semilinear PDEs, Probab. Theory Related Fields 121 (2001) 492-524. | MR | Zbl

[12] Cocordel M., Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalue and variational formulas, Indiana Univ. Math. J. 45 (1996) 1095-1117. | MR | Zbl

[13] Crandall M.G., Ishii H., Lions P.-L., User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl

[14] Dal Maso G., Modica L., Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew. Math. 368 (1986) 28-42. | MR | Zbl

[15] N. Dirr, A. Yip, personal communication.

[16] E W., A class of homogenization problems in the calculus of variations, Comm. Pure Appl. Math. XLIV (1991) 733-759. | MR | Zbl

[17] Evans L.C., Periodic homogenization of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 245-265. | MR | Zbl

[18] Evans L.C., The perturbed test function method for viscosity solutions of nonlinear pde, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359-375. | MR | Zbl

[19] Freidlin M., On factorization of a non-negative definite matrix, Probab. Theory Appl. 13 (1968) 375-378, (in Russian). | Zbl

[20] Ishii H., Almost periodic homogenization of Hamilton-Jacobi equations, in: Int. Conf. on Diff. Eqs., vol. 1, Berlin 1999, World Scientific, River Edge, NJ, 2000, pp. 600-605. | MR | Zbl

[21] Ishii H., Lions P.-L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, JDE 83 (1990) 26-78. | MR | Zbl

[22] Jikov V.V., Kozlov S.M., Oleinik O.A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, 1991. | MR | Zbl

[23] H. Kosynga, F. Rezankhanlou, S.R.S. Varadhan, Stochastic homogenization of Hamilton-Jacobi-Bellman equations, Preprint.

[24] Kozlov S.M., The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys 40 (1985) 73-145. | MR | Zbl

[25] Lions P.-L., Resolution de problemes elliptic quasilineaires, Arch. Rational Mech. Anal. 74 (1980) 335-353. | MR | Zbl

[26] Lions P.-L., Souganidis P.E., Correctors for the homogenization of Hamilton-Jacobi equations in a stationary ergodic setting, Comm. Pure Appl. Math. LVI (2003) 1501-1524. | MR | Zbl

[27] Lions P.-L., Souganidis P.E., Homogenization of “viscous” Hamilton-Jacobi equations in stationary ergodic media, Comm. Partial Differential Equations 30 (2005) 335-375. | Zbl

[28] P.-L. Lions, P.E. Souganidis, in preparation.

[29] P.-L. Lions, G. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations, Preprint.

[30] Majda A., Souganidis P.E., Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales, Nonlinearity 7 (1994) 1-30. | MR | Zbl

[31] S. Müller, private communication.

[32] Oleinik A., Alcuni visultati sulle equazioni lineari e quasilineri ellitico-paraboliche a derivate parziali del second ordine, Rend. Classe Sci. Fis. Mat., Nat. Acad. Naz. Lincei, Sci. 8 40 (1966) 774-784. | Zbl

[33] Papanicolaou G., Varadhan S.R.S., Boundary value problems with rapidly oscillating random coefficients, in: Fritz J., Lebaritz J.L., Szasz D. (Eds.), Rigorous Results in Statistical Mechanics and Quantum Field Theory, Proc. Colloq. on Random Fields, Colloquia Mathematica Societ. Janos Bolyai, vol. 10, 1979, pp. 835-873. | MR | Zbl

[34] Papanicolaou G., Varadhan S.R.S., Diffusion with random coefficients, in: Krishnaiah P.R. (Ed.), Essays in Statistics and Probability, North-Holland, 1981. | MR | Zbl

[35] Rezankhanlou F., Tarver J., Homogenization for stochastic Hamilton-Jacobi equations, Arch. Rational Mech. Anal. 151 (2000) 277-309. | MR | Zbl

[36] Serrin J., The problem of Dirichlet of quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-469. | MR | Zbl

[37] Souganidis P.E., Front propagation: Theory and applications, in: CIME Course on “Viscosity Solutions and their Applications”, Lecture Notes in Math., vol. 1660, Springer, 1997. | Zbl

[38] Souganidis P.E., Recent developments in the theory of front propagation and its applications, in: Sabiclussi G. (Ed.), Modern Methods in Scientific Computing and Applications, NATO Science Ser. II, vol. 75, Kluwer Academic, 2002. | MR | Zbl

[39] Souganidis P.E., Stochastic homogenization of Hamilton-Jacobi equations and some applications, Asymptotic Anal. 20 (1999) 1-11. | MR | Zbl

  • Davini, Andrea Stochastic homogenization of quasiconvex degenerate viscous HJ equations in 1d, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 2 | DOI:10.1007/s00526-024-02870-x
  • Mitake, Hiroyoshi; Mooney, Connor; Tran, Hung V.; Xin, Jack; Yu, Yifeng Bifurcation of homogenization and nonhomogenization of the curvature G-equation with shear flows, Mathematische Annalen, Volume 391 (2025) no. 2, p. 3077 | DOI:10.1007/s00208-024-02983-w
  • Jang, Jiwoong Periodic homogenization of geometric equations without perturbed correctors, Mathematische Annalen, Volume 391 (2025) no. 2, p. 3143 | DOI:10.1007/s00208-024-02998-3
  • Xin, Jack; Yu, Yifeng; Ronney, Paul Lagrangian, game theoretic, and PDE methods for averaging G-equations in turbulent combustion: existence and beyond, Bulletin of the American Mathematical Society, Volume 61 (2024) no. 3, p. 470 | DOI:10.1090/bull/1838
  • Carvajal-Ariza, Carlos; Henríquez-Amador, Javier; Vélez-Santiago, Alejandro The generalized anisotropic dynamical Wentzell heat equation with nonstandard growth conditions, Journal d'Analyse Mathématique, Volume 152 (2024) no. 2, p. 615 | DOI:10.1007/s11854-023-0306-z
  • Jang, Jiwoong A convergence rate of periodic homogenization for forced mean curvature flow of graphs in the laminar setting, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 3 | DOI:10.1007/s00030-024-00929-4
  • Gao, Hongwei; Long, Ziang; Xin, Jack; Yu, Yifeng Existence of an Effective Burning Velocity in a Cellular Flow for the Curvature G-Equation Proved Using a Game Analysis, The Journal of Geometric Analysis, Volume 34 (2024) no. 3 | DOI:10.1007/s12220-023-01523-3
  • Morfe, Peter S. Homogenization of the Allen–Cahn equation with periodic mobility, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 3 | DOI:10.1007/s00526-022-02199-3
  • Jang, Jiwoong; Kwon, Dohyun; Mitake, Hiroyoshi; Tran, Hung V. Level-set forced mean curvature flow with the Neumann boundary condition, Journal de Mathématiques Pures et Appliquées, Volume 168 (2022), p. 143 | DOI:10.1016/j.matpur.2022.11.002
  • Daudin, Samuel Optimal Control of Diffusion Processes with Terminal Constraint in Law, Journal of Optimization Theory and Applications, Volume 195 (2022) no. 1, p. 1 | DOI:10.1007/s10957-022-02053-8
  • Berestycki, Henri; Nadin, Grégoire Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations, Memoirs of the American Mathematical Society, Volume 280 (2022) no. 1381 | DOI:10.1090/memo/1381
  • Brock, F.; Díaz, J.I.; Ferone, A.; Gómez-Castro, D.; Mercaldo, A. Steiner symmetrization for anisotropic quasilinear equations via partial discretization, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 38 (2021) no. 2, p. 347 | DOI:10.1016/j.anihpc.2020.07.005
  • Xu, Yao; Niu, Weisheng Convergence rates in almost-periodic homogenization of higher-order elliptic systems, Asymptotic Analysis, Volume 123 (2021) no. 1-2, p. 95 | DOI:10.3233/asy-201627
  • Yilmaz, Atilla Stochastic homogenization of a class of quasiconvex viscous Hamilton-Jacobi equations in one space dimension, Journal of Differential Equations, Volume 300 (2021), p. 660 | DOI:10.1016/j.jde.2021.08.004
  • Gao, Hongwei; Kim, Inwon Head and Tail Speeds of Mean Curvature Flow with Forcing, Archive for Rational Mechanics and Analysis, Volume 235 (2020) no. 1, p. 287 | DOI:10.1007/s00205-019-01423-3
  • Liang, Xing; Zhou, Tao Spreading speeds of KPP-type lattice systems in heterogeneous media, Communications in Contemporary Mathematics, Volume 22 (2020) no. 01, p. 1850083 | DOI:10.1142/s0219199718500839
  • Cardaliaguet, Pierre; Masoero, Marco Weak KAM theory for potential MFG, Journal of Differential Equations, Volume 268 (2020) no. 7, p. 3255 | DOI:10.1016/j.jde.2019.09.060
  • Liang, Xing; Zhou, Tao Spreading speeds of nonlocal KPP equations in almost periodic media, Journal of Functional Analysis, Volume 279 (2020) no. 9, p. 108723 | DOI:10.1016/j.jfa.2020.108723
  • Duncan, Simon J.; Daly, Keith R.; McKay Fletcher, Daniel M.; Ruiz, Siul; Sweeney, Paul; Roose, Tiina Multiple Scale Homogenisation of Nutrient Movement and Crop Growth in Partially Saturated Soil, Bulletin of Mathematical Biology, Volume 81 (2019) no. 10, p. 3778 | DOI:10.1007/s11538-019-00656-3
  • Dirr, Nicolas; Nguyen, Vinh Duc Some new results on Lipschitz regularization for parabolic equations, Journal of Evolution Equations, Volume 19 (2019) no. 4, p. 1149 | DOI:10.1007/s00028-019-00512-w
  • Lyu, Jiancheng; Xin, Jack; Yu, Yifeng Curvature Effect in Shear Flow: Slowdown of Turbulent Flame Speeds with Markstein Number, Communications in Mathematical Physics, Volume 359 (2018) no. 2, p. 515 | DOI:10.1007/s00220-017-3060-1
  • Ghilli, Daria Viscosity methods for large deviations estimates of multiscale stochastic processes, ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 2, p. 605 | DOI:10.1051/cocv/2017051
  • Shen, Zhongwei; Zhuge, Jinping Approximate correctors and convergence rates in almost-periodic homogenization, Journal de Mathématiques Pures et Appliquées, Volume 110 (2018), p. 187 | DOI:10.1016/j.matpur.2017.09.014
  • Bayraktar, Erhan; Cayé, Thomas; Ekren, Ibrahim Asymptotics for Small Nonlinear Price Impact: A PDE Homogenization Approach to the Multidimensional Case, SSRN Electronic Journal (2018) | DOI:10.2139/ssrn.3287099
  • Nadin, Grégoire; Rossi, Luca Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 3, p. 1239 | DOI:10.1007/s00205-016-1056-1
  • Cesaroni, Annalisa; Dirr, Nicolas; Novaga, Matteo Homogenization of a semilinear heat equation, Journal de l’École polytechnique — Mathématiques, Volume 4 (2017), p. 633 | DOI:10.5802/jep.54
  • Ley, Olivier; Nguyen, Vinh Duc Lipschitz regularity results for nonlinear strictly elliptic equations and applications, Journal of Differential Equations, Volume 263 (2017) no. 7, p. 4324 | DOI:10.1016/j.jde.2017.05.020
  • Kim, Sunghan; Lee, Ki-Ahm Higher Order Convergence Rates in Theory of Homogenization: Equations of Non-divergence Form, Archive for Rational Mechanics and Analysis, Volume 219 (2016) no. 3, p. 1273 | DOI:10.1007/s00205-015-0921-7
  • Piatnitski, A.; Rybalko, V. On the first eigenpair of singularly perturbed operators with oscillating coefficients, Communications in Partial Differential Equations, Volume 41 (2016) no. 1, p. 1 | DOI:10.1080/03605302.2015.1091838
  • Ley, Olivier; Nguyen, Vinh Duc Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems, Nonlinear Analysis, Volume 130 (2016), p. 76 | DOI:10.1016/j.na.2015.09.012
  • Bardi, Martino; Feleqi, Ermal Nonlinear elliptic systems and mean-field games, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 4 | DOI:10.1007/s00030-016-0397-7
  • Shen, Zhongwei Convergence rates and Hölder estimates in almost-periodic homogenization of elliptic systems, Analysis PDE, Volume 8 (2015) no. 7, p. 1565 | DOI:10.2140/apde.2015.8.1565
  • Possamaï, Dylan; Soner, H. Mete; Touzi, Nizar Homogenization and Asymptotics for Small Transaction Costs: The Multidimensional Case, Communications in Partial Differential Equations, Volume 40 (2015) no. 11, p. 2005 | DOI:10.1080/03605302.2015.1053916
  • Hajj Chehade, Hana; Jazar, Mustapha; Monneau, Régis A priori gradient bounds for fully nonlinear parabolic equations and applications to porous medium models, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 6, p. 1346 | DOI:10.1016/j.matpur.2014.11.001
  • Caffarelli, L. A.; Monneau, R. Counter-Example in Three Dimension and Homogenization of Geometric Motions in Two Dimension, Archive for Rational Mechanics and Analysis, Volume 212 (2014) no. 2, p. 503 | DOI:10.1007/s00205-013-0712-y
  • Spiliopoulos, Konstantinos Large Deviations and Importance Sampling for Systems of Slow-Fast Motion, Applied Mathematics Optimization, Volume 67 (2013) no. 1, p. 123 | DOI:10.1007/s00245-012-9183-z
  • Caffarelli, Luis The homogenization of surfaces and boundaries, Bulletin of the Brazilian Mathematical Society, New Series, Volume 44 (2013) no. 4, p. 755 | DOI:10.1007/s00574-013-0033-7
  • Cesaroni, Annalisa; Novaga, Matteo Long-Time Behavior of the Mean Curvature Flow with Periodic Forcing, Communications in Partial Differential Equations, Volume 38 (2013) no. 5, p. 780 | DOI:10.1080/03605302.2013.771508
  • Marchi, Claudio Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem, ESAIM: Control, Optimisation and Calculus of Variations, Volume 18 (2012) no. 4, p. 954 | DOI:10.1051/cocv/2011203
  • Berestycki, Henri; Nadin, Grégoire Spreading speeds for one-dimensional monostable reaction-diffusion equations, Journal of Mathematical Physics, Volume 53 (2012) no. 11 | DOI:10.1063/1.4764932
  • Dupuis, Paul; Spiliopoulos, Konstantinos; Wang, Hui Importance Sampling for Multiscale Diffusions, Multiscale Modeling Simulation, Volume 10 (2012) no. 1, p. 1 | DOI:10.1137/110842545
  • Braides, Andrea; Yip, Nung Kwan A Quantitative Description of Mesh Dependence for the Discretization of Singularly Perturbed Nonconvex Problems, SIAM Journal on Numerical Analysis, Volume 50 (2012) no. 4, p. 1883 | DOI:10.1137/110822001
  • Cai, Jingjing; Lou, Bendong Periodic traveling waves of a mean curvature equation in high dimensional cylinders, Applied Mathematics and Computation, Volume 217 (2011) no. 22, p. 9267 | DOI:10.1016/j.amc.2011.04.004
  • Lou, Bendong Homogenization limit of a parabolic equation with nonlinear boundary conditions, Journal of Differential Equations, Volume 251 (2011) no. 6, p. 1447 | DOI:10.1016/j.jde.2011.06.002
  • Camilli, Fabio; Marchi, Claudio On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems, Networks Heterogeneous Media, Volume 6 (2011) no. 1, p. 61 | DOI:10.3934/nhm.2011.6.61
  • Barles, Guy; Cesaroni, Annalisa; Novaga, Matteo Homogenization of Fronts in Highly Heterogeneous Media, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 1, p. 212 | DOI:10.1137/100800014
  • Braides, Andrea; Gelli, Maria Stella; Novaga, Matteo Motion and Pinning of Discrete Interfaces, Archive for Rational Mechanics and Analysis, Volume 195 (2010) no. 2, p. 469 | DOI:10.1007/s00205-009-0215-z
  • Caffarelli, Luis A.; Souganidis, Panagiotis E. Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media, Inventiones mathematicae, Volume 180 (2010) no. 2, p. 301 | DOI:10.1007/s00222-009-0230-6
  • Coville, Jérôme; Dirr, Nicolas; Luckhaus, Stephan Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients, Networks Heterogeneous Media, Volume 5 (2010) no. 4, p. 745 | DOI:10.3934/nhm.2010.5.745
  • Capuzzo Dolcetta, I.; Leoni, F.; Porretta, A. Hölder estimates for degenerate elliptic equations with coercive Hamiltonians, Transactions of the American Mathematical Society, Volume 362 (2010) no. 9, p. 4511 | DOI:10.1090/s0002-9947-10-04807-5
  • Dolcetta, Italo Capuzzo Hölder and Lipschitz Estimates for Viscosity Solutions of Some Degenerate Elliptic PDE’s, Analysis, Partial Differential Equations and Applications (2009), p. 31 | DOI:10.1007/978-3-7643-9898-9_4
  • Cardaliaguet, P.; Lions, P.-L.; Souganidis, P.E. A discussion about the homogenization of moving interfaces, Journal de Mathématiques Pures et Appliquées, Volume 91 (2009) no. 4, p. 339 | DOI:10.1016/j.matpur.2009.01.014
  • Camilli, Fabio; Marchi, Claudio Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs, Nonlinearity, Volume 22 (2009) no. 6, p. 1481 | DOI:10.1088/0951-7715/22/6/011
  • Engquist, B.; Souganidis, P. E. Asymptotic and numerical homogenization, Acta Numerica, Volume 17 (2008), p. 147 | DOI:10.1017/s0962492906360011
  • Kosygina, Elena; Varadhan, S. R. S. Homogenization of Hamilton‐Jacobi‐Bellman equations with respect to time‐space shifts in a stationary ergodic medium, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 6, p. 816 | DOI:10.1002/cpa.20220
  • DIRR, N.; KARALI, G.; YIP, N. K. Pulsating wave for mean curvature flow in inhomogeneous medium, European Journal of Applied Mathematics, Volume 19 (2008) no. 6, p. 661 | DOI:10.1017/s095679250800764x
  • Alvarez, Olivier; Bardi, Martino; Marchi, Claudio Multiscale problems and homogenization for second-order Hamilton–Jacobi equations, Journal of Differential Equations, Volume 243 (2007) no. 2, p. 349 | DOI:10.1016/j.jde.2007.05.027
  • Dolcetta, I. Capuzzo; Leoni, F.; Porretta, A. Hölder estimates for viscous Hamilton–Jacobi equations, PAMM, Volume 7 (2007) no. 1, p. 1040201 | DOI:10.1002/pamm.200700239

Cité par 58 documents. Sources : Crossref