On a Cahn-Hilliard model for phase separation with elastic misfit
Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 2, pp. 165-185.
@article{AIHPC_2005__22_2_165_0,
     author = {Garcke, Harald},
     title = {On a {Cahn-Hilliard} model for phase separation with elastic misfit},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {165--185},
     publisher = {Elsevier},
     volume = {22},
     number = {2},
     year = {2005},
     doi = {10.1016/j.anihpc.2004.07.001},
     zbl = {1072.35081},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.001/}
}
TY  - JOUR
AU  - Garcke, Harald
TI  - On a Cahn-Hilliard model for phase separation with elastic misfit
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2005
SP  - 165
EP  - 185
VL  - 22
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.001/
DO  - 10.1016/j.anihpc.2004.07.001
LA  - en
ID  - AIHPC_2005__22_2_165_0
ER  - 
%0 Journal Article
%A Garcke, Harald
%T On a Cahn-Hilliard model for phase separation with elastic misfit
%J Annales de l'I.H.P. Analyse non linéaire
%D 2005
%P 165-185
%V 22
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.001/
%R 10.1016/j.anihpc.2004.07.001
%G en
%F AIHPC_2005__22_2_165_0
Garcke, Harald. On a Cahn-Hilliard model for phase separation with elastic misfit. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 2, pp. 165-185. doi : 10.1016/j.anihpc.2004.07.001. https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.001/

[1] Barrett J.W., Blowey J.F., An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numer. Math. 72 (1995) 257-287. | MR | Zbl

[2] Barrett J.W., Blowey J.F., An error bound for the finite element approximation of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal. 16 (1996) 257-287. | MR | Zbl

[3] Bonetti E., Colli P., Dreyer W., Gilardi G., Schimperna G., Sprekels J., A solid-solid phase change model accounting for mechanical effects, Physica D 165 (2002) 48-65. | MR | Zbl

[4] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958) 258-267.

[5] Carrive M., Miranville A., Piétrus A., The Cahn-Hilliard equation for deformable elastic media, Adv. Math. Sci. Appl. 10 (2000) 539-569. | MR | Zbl

[6] De Fontaine D., An analysis of clustering and ordering in multicomponent solid solutions - I. Stability criteria, J. Phys. Chem. Solids 33 (1972) 287-310.

[7] C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase transitions, in: J.F. Rodrigues (ed.), Mathematical Models for Phase Change Problems, Internat. Ser. Numer. Math., vol. 88, Birkhäuser, Basel, pp. 35-73. | MR | Zbl

[8] C.M. Elliott, S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy, SFB256 University Bonn, Preprint 195, 1991.

[9] Eshelby J.D., Elastic inclusions and inhomogeneities, Prog. Solid Mech. 2 (1961) 89-140. | MR

[10] Fratzl P., Penrose O., Lebowitz J.L., Modelling of phase separation in alloys with coherent elastic misfit, J. Statist. Phys. 95 (5/6) (1999) 1429-1503. | MR | Zbl

[11] H. Garcke, On mathematical models for phase separation in elastically stressed solids, habilitation thesis, 2000.

[12] Garcke H., On Cahn-Hilliard sytems with elasticity, Proc. Roy. Soc. Edinburgh. Ser. A 133 (2003) 307-331. | MR | Zbl

[13] Garcke H., Rumpf M., Weikard U., The Cahn-Hilliard equation with elasticity: finite element approximation and qualitative studies, Interfaces and Free Boundaries 3 (2001) 101-118. | MR | Zbl

[14] Gehring F.W., The Lp-integrability of the partial derivatives of a quasi conformal mapping, Acta Math. 130 (1973) 265-277. | MR | Zbl

[15] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., Princeton University Press, 1983. | MR | Zbl

[16] Giaquinta M., Modica G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311/312 (1979) 145-169. | MR | Zbl

[17] Hoyt J.J., The continuum theory of nucleation in multicomponent systems, Acta Metall. 38 (1990) 1405-1412.

[18] Khachaturyan A.G., Some questions concerning the theory of phase transitions in solids, Fiz. Tverd. Tela 8 (1966) 2709-2717, English translation in, Sov. Phys. Solid. State 8 (1966) 2163.

[19] Kirkaldy J.S., Young D.J., Diffusion in the Condensed State, The Institute of Metals, London, 1987.

[20] Larché F.C., Cahn J.W., Thermochemical equilibrium of multiphase solids under stress, Acta Metall. 26 (1978) 1579-1589.

[21] Larché F.C., Cahn J.W., The effect of self-stress on diffusion in solids, Acta Metall. 30 (1982) 1835-1845.

[22] Leo P.H., Lowengrub J.S., Jou H.J., A diffuse interface model for microstructural evolution in elastically stressed solids, Acta Mater. 46 (1998) 2113-2130.

[23] Novick-Cohen A., The Cahn-Hilliard equation: mathematical and modelling perspectives, Adv. Math. Sci. Appl. 8 (1998) 965-985. | MR | Zbl

[24] Onsager L., Reciprocal relations in irreversible processes I, Phys. Rev. 37 (1931) 405-426. | Zbl

[25] Onsager L., Reciprocal relations in irreversible processes II, Phys. Rev. 38 (1931) 2265-2279. | Zbl

[26] Onuki A., Ginzburg-Landau approach to elastic effects in the phase separation of solids, J. Phys. Soc. Jpn. 58 (1989) 3065-3068.

[27] J.D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, Verhaendel. Kronik. Akad. Weten. Amsterdam, vol. 1 (1893) (in Dutch).

[28] Zeidler E., Nonlinear Functional Analysis and its Applications IV, Springer, New York, 1988. | MR | Zbl

  • Abels, Helmut; Garcke, Harald; Haselböck, Jonas Existence of weak solutions to a Cahn–Hilliard–Biot system, Nonlinear Analysis: Real World Applications, Volume 81 (2025), p. 104194 | DOI:10.1016/j.nonrwa.2024.104194
  • Abels, Helmut; Garcke, Harald; Poiatti, Andrea Mathematical Analysis of a Diffuse Interface Model for Multi-phase Flows of Incompressible Viscous Fluids with Different Densities, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 2 | DOI:10.1007/s00021-024-00864-5
  • Gal, C. G.; Grasselli, M.; Poiatti, A.; Shomberg, J. L. Multi–component Cahn–Hilliard Systems with Singular Potentials: Theoretical Results, Applied Mathematics Optimization, Volume 88 (2023) no. 3 | DOI:10.1007/s00245-023-10048-8
  • Fritz, Marvin Tumor Evolution Models of Phase-Field Type with Nonlocal Effects and Angiogenesis, Bulletin of Mathematical Biology, Volume 85 (2023) no. 6 | DOI:10.1007/s11538-023-01151-6
  • Stinson, Kerrek Existence for a Cahn–Hilliard Model for Lithium-Ion Batteries with Exponential Growth Boundary Conditions, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09927-9
  • Laux, Tim; Stinson, Kerrek Sharp interface limit of the Cahn–Hilliard reaction model for lithium-ion batteries, Mathematical Models and Methods in Applied Sciences, Volume 33 (2023) no. 12, p. 2557 | DOI:10.1142/s0218202523500550
  • Shimura, Kazuki; Yoshikawa, Shuji A new conservative finite difference scheme for 1D Cahn–Hilliard equation coupled with elasticity, Journal of Applied Analysis, Volume 28 (2022) no. 2, p. 311 | DOI:10.1515/jaa-2021-2071
  • Zhao, Lixian; Bian, Xingzhi; Cheng, Fang ANALYSIS FOR 3D DEGENERATE CAHN-LARCHÉ MODEL WITH PERIODIC BOUNDARY CONDITIONS, Journal of Applied Analysis Computation, Volume 11 (2021) no. 3, p. 1494 | DOI:10.11948/20200250
  • Garcke, Harald; Lam, Kei Fong; Signori, Andrea On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects, Nonlinear Analysis: Real World Applications, Volume 57 (2021), p. 103192 | DOI:10.1016/j.nonrwa.2020.103192
  • Garcke, Harald; Lam, Kei Fong; Signori, Andrea Sparse Optimal Control of a Phase Field Tumor Model with Mechanical Effects, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 2, p. 1555 | DOI:10.1137/20m1372093
  • Hoppe, Ronald H. W.; Winkle, James J. Numerical solution of a phase field model for polycrystallization processes in binary mixtures, Computing and Visualization in Science, Volume 20 (2019) no. 1-2, p. 13 | DOI:10.1007/s00791-018-00307-5
  • Tsagrakis, Ioannis; Aifantis, Elias C. Gradient and size effects on spinodal and miscibility gaps, Continuum Mechanics and Thermodynamics, Volume 30 (2018) no. 5, p. 1185 | DOI:10.1007/s00161-018-0673-3
  • Ng, Chin F.; Frieboes, Hermann B. Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm, Frontiers in Physiology, Volume 9 (2018) | DOI:10.3389/fphys.2018.00821
  • Tsagrakis, Ioannis; Aifantis, Elias C. Thermodynamic coupling between gradient elasticity and a Cahn–Hilliard type of diffusion: size-dependent spinodal gaps, Continuum Mechanics and Thermodynamics, Volume 29 (2017) no. 6, p. 1181 | DOI:10.1007/s00161-017-0565-y
  • Ng, Chin F.; Frieboes, Hermann B. Model of vascular desmoplastic multispecies tumor growth, Journal of Theoretical Biology, Volume 430 (2017), p. 245 | DOI:10.1016/j.jtbi.2017.05.013
  • Farshbaf-Shaker, M. Hassan; Hecht, Claudia Optimal Control of Elastic Vector-Valued Allen–Cahn Variational Inequalities, SIAM Journal on Control and Optimization, Volume 54 (2016) no. 1, p. 129 | DOI:10.1137/130937354
  • Farshbaf-Shaker, M. Hassan A Relaxation Approach to Vector-Valued Allen–Cahn MPEC Problems, Applied Mathematics Optimization, Volume 72 (2015) no. 2, p. 325 | DOI:10.1007/s00245-014-9282-0
  • Kraus, Christiane; Bonetti, Elena; Heinemann, Christian; Segatti, Antonio Modeling and analysis of a phase field system for damage and phase separation processes in solids, Journal of Differential Equations, Volume 258 (2015) no. 11, p. 3928 | DOI:10.1016/j.jde.2015.01.024
  • Heinemann, Christian; Kraus, Christiane A degenerating Cahn–Hilliard system coupled with complete damage processes, Nonlinear Analysis: Real World Applications, Volume 22 (2015), p. 388 | DOI:10.1016/j.nonrwa.2014.09.019
  • Wegner, D. Existence for coupled pseudomonotone–strongly monotone systems and application to a Cahn–Hilliard model with elasticity, Nonlinear Analysis: Theory, Methods Applications, Volume 113 (2015), p. 385 | DOI:10.1016/j.na.2014.10.018
  • Roubíček, Tomáš; Tomassetti, Giuseppe Thermomechanics of damageable materials under diffusion: modelling and analysis, Zeitschrift für angewandte Mathematik und Physik, Volume 66 (2015) no. 6, p. 3535 | DOI:10.1007/s00033-015-0566-2
  • Boyer, Franck; Minjeaud, Sebastian Hierarchy of consistent n-component Cahn–Hilliard systems, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 14, p. 2885 | DOI:10.1142/s0218202514500407
  • HEINEMANN, CHRISTIAN; KRAUS, CHRISTIANE Existence results for diffuse interface models describing phase separation and damage, European Journal of Applied Mathematics, Volume 24 (2013) no. 2, p. 179 | DOI:10.1017/s095679251200037x
  • Blesgen, Thomas; Chenchiah, Isaac Vikram Cahn–Hilliard equations incorporating elasticity: analysis and comparison to experiments, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 371 (2013) no. 2005, p. 20120342 | DOI:10.1098/rsta.2012.0342
  • Fonseca, I.; Fusco, N.; Leoni, G.; Morini, M. Motion of Elastic Thin Films by Anisotropic Surface Diffusion with Curvature Regularization, Archive for Rational Mechanics and Analysis, Volume 205 (2012) no. 2, p. 425 | DOI:10.1007/s00205-012-0509-4
  • Dedè, Luca; Borden, Micheal J.; Hughes, Thomas J. R. Isogeometric Analysis for Topology Optimization with a Phase Field Model, Archives of Computational Methods in Engineering, Volume 19 (2012) no. 3, p. 427 | DOI:10.1007/s11831-012-9075-z
  • Cherfils, Laurence; Miranville, Alain; Zelik, Sergey The Cahn-Hilliard Equation with Logarithmic Potentials, Milan Journal of Mathematics, Volume 79 (2011) no. 2, p. 561 | DOI:10.1007/s00032-011-0165-4
  • Pawłow, Irena; Zaja̧czkowski, Wojciech M. Global regular solutions to Cahn–Hilliard system coupled with viscoelasticity, Mathematical Methods in the Applied Sciences, Volume 32 (2009) no. 17, p. 2197 | DOI:10.1002/mma.1131
  • Eck, Ch.; Emmerich, H. Homogenization and two-scale models for liquid phase epitaxy, The European Physical Journal Special Topics, Volume 177 (2009) no. 1, p. 5 | DOI:10.1140/epjst/e2009-01165-8
  • Abels, Helmut; Wilke, Mathias Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Analysis: Theory, Methods Applications, Volume 67 (2007) no. 11, p. 3176 | DOI:10.1016/j.na.2006.10.002
  • Pawłow, Irena; Zaja̧czkowski, Wojciech M. Classical solvability of 1‐D Cahn–Hilliard equation coupled with elasticity, Mathematical Methods in the Applied Sciences, Volume 29 (2006) no. 7, p. 853 | DOI:10.1002/mma.715
  • Barrett, John; Garcke, Harald; Nürnberg, Robert Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid, Mathematics of Computation, Volume 75 (2005) no. 253, p. 7 | DOI:10.1090/s0025-5718-05-01802-8

Cité par 32 documents. Sources : Crossref