@article{AIHPC_2005__22_2_127_0, author = {Desvillettes, Laurent and Mouhot, Cl\'ement}, title = {About ${L}^{p}$ estimates for the spatially homogeneous {Boltzmann} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {127--142}, publisher = {Elsevier}, volume = {22}, number = {2}, year = {2005}, doi = {10.1016/j.anihpc.2004.03.002}, mrnumber = {2123118}, zbl = {1077.76060}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.002/} }
TY - JOUR AU - Desvillettes, Laurent AU - Mouhot, Clément TI - About ${L}^{p}$ estimates for the spatially homogeneous Boltzmann equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 127 EP - 142 VL - 22 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.002/ DO - 10.1016/j.anihpc.2004.03.002 LA - en ID - AIHPC_2005__22_2_127_0 ER -
%0 Journal Article %A Desvillettes, Laurent %A Mouhot, Clément %T About ${L}^{p}$ estimates for the spatially homogeneous Boltzmann equation %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 127-142 %V 22 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.002/ %R 10.1016/j.anihpc.2004.03.002 %G en %F AIHPC_2005__22_2_127_0
Desvillettes, Laurent; Mouhot, Clément. About ${L}^{p}$ estimates for the spatially homogeneous Boltzmann equation. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 2, pp. 127-142. doi : 10.1016/j.anihpc.2004.03.002. http://www.numdam.org/articles/10.1016/j.anihpc.2004.03.002/
[1] Entropy dissipation and long range interactions, Arch. Rat. Mech. Anal. 152 (2000) 327-355. | MR | Zbl
, , , ,[2] On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math. 55 (2002) 30-70. | MR | Zbl
, ,[3] On the Boltzmann equation, Arch. Rat. Mech. Anal. 45 (1972) 1-34. | MR | Zbl
,[4] Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rat. Mech. Anal. 77 (1981) 11-21. | MR | Zbl
,[5] The Boltzmann Equation and its Applications, Springer, 1988. | MR | Zbl
,[6] Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rat. Mech. Anal. 123 (1993) 387-404. | MR | Zbl
,[7] On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness, Comm. Partial Differential Equations 25 (1/2) (2000) 179-259. | MR | Zbl
, ,[8] L. Desvillettes, B. Wennberg, Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Partial Differential Equations, submitted for publication. | MR | Zbl
[9] M. Escobedo, P. Laurençot, S. Mischler, On a kinetic equation for coalescing particles, Prépublication Inria, 2003. | MR
[10] On Boltzmann equations and Fokker-Planck asymptotics: influence of grazing collisions, J. Stat. Phys. 89 (3-4) (1997) 751-776. | MR | Zbl
,[11] -estimates for the nonlinear spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal. 92 (1986) 23-57. | MR | Zbl
,[12] Global -properties for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal. 103 (1988) 1-38. | MR | Zbl
,[13] On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory. I, Arch. Rat. Mech. Anal. 5 (1956) 1-54. | MR | Zbl
, ,[14] Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994) 539-584. | MR | Zbl
,[15] Regularity and compactness for Boltzmann collision operators without angular cut-off, C. R. Acad. Sci. Paris Sér. I 326 (1) (1998) 37-41. | MR | Zbl
,[16] Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Acad. Sci. Paris Sér. I 336 (2003) 407-412. | MR | Zbl
, ,[17] On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (4) (1999) 467-501. | Numdam | MR | Zbl
, ,[18] C. Mouhot, C. Villani, Regularity theory for the homogeneous Boltzmann with angular cut-off, Arch. Rat. Mech. Anal., submitted for publication. | Zbl
[19] On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys. 98 (2000) 1279-1309. | MR | Zbl
, ,[20] Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas, J. Statist. Phys. 94 (1999) 619-637. | MR | Zbl
, ,[21] On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations, Arch. Rat. Mech. Anal. 143 (1998) 273-307. | MR | Zbl
,[22] Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off, Rev. Mat. Iberoam. 15 (1999) 335-352. | MR | Zbl
,[23] On moments and uniqueness for solutions to the space homogeneous Boltzmann equation, Transport Theory Statist. Phys. 23 (1994) 533-539. | MR | Zbl
,[24] Entropy dissipation and moment production for the Boltzmann equation, J. Statist. Phys. 86 (5-6) (1997) 1053-1066. | MR | Zbl
,Cité par Sources :