Regularity results for parabolic systems related to a class of non-newtonian fluids
Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 25-60.
@article{AIHPC_2004__21_1_25_0,
     author = {Acerbi, E and Mingione, G and Seregin, G. A.},
     title = {Regularity results for parabolic systems related to a class of non-newtonian fluids},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {25--60},
     publisher = {Elsevier},
     volume = {21},
     number = {1},
     year = {2004},
     doi = {10.1016/j.anihpc.2002.11.002},
     mrnumber = {2037246},
     zbl = {1052.76004},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/}
}
TY  - JOUR
AU  - Acerbi, E
AU  - Mingione, G
AU  - Seregin, G. A.
TI  - Regularity results for parabolic systems related to a class of non-newtonian fluids
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2004
SP  - 25
EP  - 60
VL  - 21
IS  - 1
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/
DO  - 10.1016/j.anihpc.2002.11.002
LA  - en
ID  - AIHPC_2004__21_1_25_0
ER  - 
%0 Journal Article
%A Acerbi, E
%A Mingione, G
%A Seregin, G. A.
%T Regularity results for parabolic systems related to a class of non-newtonian fluids
%J Annales de l'I.H.P. Analyse non linéaire
%D 2004
%P 25-60
%V 21
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/
%R 10.1016/j.anihpc.2002.11.002
%G en
%F AIHPC_2004__21_1_25_0
Acerbi, E; Mingione, G; Seregin, G. A. Regularity results for parabolic systems related to a class of non-newtonian fluids. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 25-60. doi : 10.1016/j.anihpc.2002.11.002. https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/

[1] Acerbi E., Mingione G., Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal. 156 (2001) 121-140. | MR | Zbl

[2] Acerbi E., Mingione G., Regularity results for electrorheological fluids: the stationary case, C. R. Acad. Sci. Paris Ser. I 334 (2002) 817-822. | MR | Zbl

[3] Acerbi E., Mingione G., Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal. 164 (2002) 213-259. | MR | Zbl

[4] Bildhauer M., Fuchs M., Partial regularity for variational integrals with (s,μ,q)-growth, Calc. Var. Partial Differential Equations 13 (2001) 537-560. | Zbl

[5] M. Bildhauer, M. Fuchs, Variants of the Stokes problem: the case of anisotropic potentials J. Math. Fluid Mechanics, submitted for publication. | MR | Zbl

[6] Caffarelli L., Kohn R.V., Nirenberg L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982) 771-831. | MR | Zbl

[7] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4) 137 (1984) 83-122. | MR | Zbl

[8] Coscia A., Mingione G., Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Ser. I 328 (1999) 363-368. | MR | Zbl

[9] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, 2002. | Zbl

[10] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, J. Differential Equations, in press. | MR | Zbl

[11] Frehse J., Seregin G.A., Full regularity for a class of degenerated parabolic systems in two spatial variables, Manuscripta Math. 99 (1999) 517-539. | MR | Zbl

[12] Frehse J., Seregin G.A., Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Amer. Math. Soc. Transl. Ser. 2 (1999) 193. | MR | Zbl

[13] Fuchs M., Seregin G.A., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Math., vol. 1749, Springer, Berlin, 2000. | MR | Zbl

[14] Fuchs M., Seregin G.A., Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci. 22 (1999) 317-351. | MR | Zbl

[15] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245-248. | EuDML | MR | Zbl

[16] Giusti E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. | MR | Zbl

[17] Ladyzhenskaya O.A., On nonlinear problems of continuum mechanics, in: Proc. Internat. Congr. Math. (Moscow 1966), Nauka, Moscow, 1968, pp. 560-573, English translation in: , Amer. Math. Soc. Translation (2) 70 (1968). | Zbl

[18] Ladyzhenskaya O.A., New equations for description of motion of viscous incompressible fluids and global solvability of boundary value problems for them, Proc. Steklov Inst. Math. 102 (1967). | Zbl

[19] Ladyzhenskaya O.A., On some modifications of the Navier-Stokes equations for large gradient of velocity, Zap. Nauchn. Sem. Leningrad Odtel. Mat. Inst. Steklov (LOMI) 7 (1968) 126-154, English translation in: , Sem. Math. V.A. Steklov Math. Inst. Leningrad 7 (1968). | MR | Zbl

[20] Ladyzhenskaya O.A., Seregin G.A., On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999) 356-387. | MR | Zbl

[21] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1967. | MR | Zbl

[22] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994) 497-522. | EuDML | Numdam | MR | Zbl

[23] Lions J.-L., Quelques methodes de resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. | MR | Zbl

[24] P. Marcellini, Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint Dip. Mat. “U. Dini”, Univ. Firenze, 1987.

[25] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations 90 (1991) 1-30. | MR | Zbl

[26] Mingione G., The singular set of solutions to non-differentiable elliptic systems, Arch. Rational Mech. Anal. 166 (2003) 287-301. | MR | Zbl

[27] Malek J., Necas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2, Adv. Differential Equations 6 (2001) 257-302. | Zbl

[28] Malek J., Necas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comp., vol. 13, Chapman-Hall, London, 1996. | MR | Zbl

[29] Rajagopal K.R., Wineman A.S., Flow of electrorheological materials, Acta Mech. 91 (1992) 57-75. | MR | Zbl

[30] Rajagopal K.R., Růžička M., Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001) 59-78. | Zbl

[31] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. | MR | Zbl

[32] Růžička M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999) 393-398. | MR | Zbl

[33] Seregin G.A., Interior regularity for solutions to the modified Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999) 235-281. | MR | Zbl

[34] Seregin G.A., On the number of singular points of weak solutions to the Navier-Stokes equations, Comm. Pure Appl. Math. 54 (2001) 1019-1028. | MR | Zbl

[35] Seregin G.A., Sverak V., Navier-Stokes equations with lower bounds on the pressure, Arch. Rational Mech. Anal. 163 (2002) 65-86. | MR | Zbl

[36] Temam R., Navier-Stokes equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1984. | MR | Zbl

[37] Zhikov V.V., Meyers type estimates for solving the nonlinear Stokes system, Differential Equations 33 (1997) 107-114. | MR | Zbl

  • Ciani, Simone; Henriques, Eurica; Skrypnik, Igor I. Fine Boundary Continuity for Degenerate Double-Phase Diffusion, Potential Analysis (2025) | DOI:10.1007/s11118-025-10198-0
  • Arora, Rakesh; Shmarev, Sergey Optimal global second-order regularity and improved integrability for parabolic equations with variable growth, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0016
  • Wichmann, Jörn Temporal Regularity of Symmetric Stochastic p-Stokes Systems, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 2 | DOI:10.1007/s00021-024-00852-9
  • Ciani, Simone; Henriques, Eurica; Skrypnik, Igor I. The impact of intrinsic scaling on the rate of extinction for anisotropic non-Newtonian fast diffusion, Nonlinear Analysis, Volume 242 (2024), p. 113497 | DOI:10.1016/j.na.2024.113497
  • Andrade, Pêdra D. S.; da Silva, João Vitor; Rampasso, Giane C.; Santos, Makson S. Sharp Regularity Estimates for a Singular Inhomogeneous (m, p)-Laplacian Equation, Potential Analysis (2024) | DOI:10.1007/s11118-024-10164-2
  • Peng, Siyao On an Application of Phragmén–Lindelöf Method to Singular Fractional-Order Problem, Results in Mathematics, Volume 79 (2024) no. 2 | DOI:10.1007/s00025-023-02089-w
  • Khompysh, Kh. Pseudoparabolic equations with variable exponents and coefficients: blow-up and large time behaviors, Applicable Analysis, Volume 102 (2023) no. 6, p. 1786 | DOI:10.1080/00036811.2021.2003342
  • Ciani, Simone; Mosconi, Sunra; Vespri, Vincenzo Parabolic Harnack Estimates for anisotropic slow diffusion, Journal d'Analyse Mathématique, Volume 149 (2023) no. 2, p. 611 | DOI:10.1007/s11854-022-0261-0
  • Bulíček, Miroslav; Gwiazda, Piotr; Skrzeczkowski, Jakub; Woźnicki, Jakub Non-Newtonian fluids with discontinuous-in-time stress tensor, Journal of Functional Analysis, Volume 285 (2023) no. 2, p. 109943 | DOI:10.1016/j.jfa.2023.109943
  • Buhrii, O. M.; Buhrii, N. V.; Kholyavka, O. T. Hyperbolic Stokes system of the third order with variable exponent of nonlinearity, Matematychni Metody Ta Fizyko-Mekhanichni Polya, Volume 66 (2023) no. 1-2 | DOI:10.15407/mmpmf2023.66.1-2.48-62
  • Grasselli, Maurizio; Parolini, Nicola; Poiatti, Andrea; Verani, Marco Non-isothermal non-Newtonian fluids: The stationary case, Mathematical Models and Methods in Applied Sciences, Volume 33 (2023) no. 09, p. 1747 | DOI:10.1142/s0218202523500410
  • Nadji, Touil; Rahmoune, Abita Blow-up and Bounds of Solutions for a Class of Semi-Linear PseudoParabolic Equations with p(. )-Laplacian Viscoelastic Term, WSEAS TRANSACTIONS ON FLUID MECHANICS, Volume 18 (2023), p. 157 | DOI:10.37394/232013.2023.18.16
  • Chung, Nguyen Thanh; Ho, Ky On a p⋅-biharmonic problem of Kirchhoff type involving critical growth, Applicable Analysis, Volume 101 (2022) no. 16, p. 5700 | DOI:10.1080/00036811.2021.1903445
  • EL Bahja, Hamid Hölder regularity for degenerate parabolic equations with variable exponents, Boletim da Sociedade Paranaense de Matemática, Volume 40 (2022), p. 1 | DOI:10.5269/bspm.42376
  • Ho, Ky; Kim, Yun-Ho; Winkert, Patrick; Zhang, Chao The boundedness and Hölder continuity of weak solutions to elliptic equations involving variable exponents and critical growth, Journal of Differential Equations, Volume 313 (2022), p. 503 | DOI:10.1016/j.jde.2022.01.004
  • Guo, Bin; Zhang, Jingjing; Gao, Wenjie; Liao, Menglan Classification of blow-up and global existence of solutions to an initial Neumann problem, Journal of Differential Equations, Volume 340 (2022), p. 45 | DOI:10.1016/j.jde.2022.08.036
  • Li, Qifan Partial regularity for degenerate parabolic systems with nonstandard growth and discontinuous coefficients, Journal of Mathematical Analysis and Applications, Volume 514 (2022) no. 2, p. 126316 | DOI:10.1016/j.jmaa.2022.126316
  • Baasandorj, Sumiya; Byun, Sun-Sig; Lee, Ho-Sik Gradient estimates for Orlicz double phase problems with variable exponents, Nonlinear Analysis, Volume 221 (2022), p. 112891 | DOI:10.1016/j.na.2022.112891
  • Bezerra Júnior, Elzon C; da Silva, João Vitor; Ricarte, Gleydson C Geometric estimates for doubly nonlinear parabolic PDEs, Nonlinearity, Volume 35 (2022) no. 5, p. 2334 | DOI:10.1088/1361-6544/ac636e
  • Bahja, Hamid El A remark on finite element approximation of singular parabolic p(x, t)-Laplacian equation, Acta Scientiarum Mathematicarum, Volume 87 (2021) no. 1-2, p. 107 | DOI:10.14232/actasm-019-762-1
  • El Bahja, Hamid Local continuity of singular anisotropic parabolic equations with variable growth, Complex Variables and Elliptic Equations, Volume 66 (2021) no. 12, p. 1998 | DOI:10.1080/17476933.2020.1797705
  • Arora, Rakesh; Shmarev, Sergey Strong solutions of evolution equations with p(x,t)-Laplacian: Existence, global higher integrability of the gradients and second-order regularity, Journal of Mathematical Analysis and Applications, Volume 493 (2021) no. 1, p. 124506 | DOI:10.1016/j.jmaa.2020.124506
  • Bahja, Hamid El Hölder continuity of singular parabolic equations with variable nonlinearity, Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 28 (2020) no. 3, p. 51 | DOI:10.2478/auom-2020-0034
  • Arumugam, Gurusamy; Erhardt, Andre H. Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion, Electronic Journal of Differential Equations, Volume 2020 (2020) no. 01-132, p. 123 | DOI:10.58997/ejde.2020.123
  • Breit, Dominic; Mensah, Prince Romeo Space-time approximation of parabolic systems with variable growth, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 4, p. 2505 | DOI:10.1093/imanum/drz039
  • Arora, Rakesh; Giacomoni, Jacques; Warnault, Guillaume Doubly nonlinear equation involving p(x)-homogeneous operators: Local existence, uniqueness and global behaviour, Journal of Mathematical Analysis and Applications, Volume 487 (2020) no. 2, p. 124009 | DOI:10.1016/j.jmaa.2020.124009
  • Jiao, Yong; Saibi, Khedoudj; Zhang, Chao Weighted L(⋅)-estimates for the nonlinear parabolic equations with non-standard growth, Journal of Mathematical Analysis and Applications, Volume 489 (2020) no. 1, p. 124145 | DOI:10.1016/j.jmaa.2020.124145
  • Zhou, Jianfeng; Tan, Zhong Regularity of weak solutions to a class of nonlinear problem with non-standard growth conditions, Journal of Mathematical Physics, Volume 61 (2020) no. 9 | DOI:10.1063/5.0010026
  • Antontsev, Stanislav; Shmarev, Sergey Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity, Nonlinear Analysis, Volume 195 (2020), p. 111724 | DOI:10.1016/j.na.2019.111724
  • Amaral, Marcelo D.; da Silva, João Vitor; Ricarte, Gleydson C.; Teymurazyan, Rafayel Sharp regularity estimates for quasilinear evolution equations, Israel Journal of Mathematics, Volume 231 (2019) no. 1, p. 25 | DOI:10.1007/s11856-019-1842-1
  • Antontsev, S. N.; Aitzhanov, S. E. Inverse Problem for an Equation with A Nonstandard Growth Condition, Journal of Applied Mechanics and Technical Physics, Volume 60 (2019) no. 2, p. 265 | DOI:10.1134/s0021894419020081
  • da Silva, João Vitor GeometricC1+αregularity estimates for nonlinear evolution models, Nonlinear Analysis, Volume 184 (2019), p. 95 | DOI:10.1016/j.na.2019.01.031
  • Breit, Dominic; Gmeineder, Franz Electro-rheological fluids under random influences: martingale and strong solutions, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 7 (2019) no. 4, p. 699 | DOI:10.1007/s40072-019-00138-6
  • Tan, Zhong; Zhou, Jianfeng; Zheng, Wenxuan Hölder continuity of weak solution to a nonlinear problem with non-standard growth conditions, Boundary Value Problems, Volume 2018 (2018) no. 1 | DOI:10.1186/s13661-018-1051-6
  • Giacomoni, Jacques; Rădulescu, Vicenţiu; Warnault, Guillaume Quasilinear parabolic problem with variable exponent: Qualitative analysis and stabilization, Communications in Contemporary Mathematics, Volume 20 (2018) no. 08, p. 1750065 | DOI:10.1142/s0219199717500651
  • Ok, Jihoon Regularity for parabolic equations with time dependent growth, Journal de Mathématiques Pures et Appliquées, Volume 120 (2018), p. 253 | DOI:10.1016/j.matpur.2018.04.003
  • Antontsev, Stanislav; Kuznetsov, Ivan; Shmarev, Sergey Global higher regularity of solutions to singular p(x,t)-parabolic equations, Journal of Mathematical Analysis and Applications, Volume 466 (2018) no. 1, p. 238 | DOI:10.1016/j.jmaa.2018.05.075
  • Jia, Cuiman; Tan, Zhong Regularity for the weak solutions to certain parabolic systems under certain growth condition, Journal of Mathematical Analysis and Applications, Volume 468 (2018) no. 1, p. 324 | DOI:10.1016/j.jmaa.2018.08.014
  • Shmarev, Sergey On the continuity of solutions of the nonhomogeneous evolutionp(x,t)-Laplace equation, Nonlinear Analysis, Volume 167 (2018), p. 67 | DOI:10.1016/j.na.2017.11.002
  • Kim, Soojung Lipschitz regularity for viscosity solutions to parabolic \varvecp(x,t)-Laplacian equations on Riemannian manifolds, Nonlinear Differential Equations and Applications NoDEA, Volume 25 (2018) no. 4 | DOI:10.1007/s00030-018-0519-5
  • Zang, Aibin Existence of weak solutions for non-stationary flows of fluids with shear thinning dependent viscosities under slip boundary conditions in half space, Science China Mathematics, Volume 61 (2018) no. 4, p. 727 | DOI:10.1007/s11425-016-0686-1
  • Baroni, Paolo; Lindfors, Casimir The Cauchy–Dirichlet problem for a general class of parabolic equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 3, p. 593 | DOI:10.1016/j.anihpc.2016.03.003
  • Zhan, Huashui A new kind of the solutions of a convection-diffusion equation related to the p ( x ) p(x) -Laplacian, Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0848-z
  • Bui, The Anh; Duong, Xuan Thinh Weighted Lorentz estimates for parabolic equations with non-standard growth on rough domains, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 6 | DOI:10.1007/s00526-017-1273-y
  • El Ouardi, Hamid; Ghabbar, Yamna Study of solutions to a class of certain parabolic systems with variable exponents, International Journal for Simulation and Multidisciplinary Design Optimization, Volume 8 (2017), p. A11 | DOI:10.1051/smdo/2017004
  • Zhan, Huashui Diffusion Convection Equation with Variable Nonlinearities, Journal of Function Spaces, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2397474
  • Sturm, Stefan Existence of weak solutions of doubly nonlinear parabolic equations, Journal of Mathematical Analysis and Applications, Volume 455 (2017) no. 1, p. 842 | DOI:10.1016/j.jmaa.2017.06.024
  • Tan, Zhong; Zhou, Jianfeng Partial regularity of a certain class of non-Newtonian fluids, Journal of Mathematical Analysis and Applications, Volume 455 (2017) no. 2, p. 1529 | DOI:10.1016/j.jmaa.2017.06.049
  • Antontsev, S.N.; Khompysh, Kh. Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 99 | DOI:10.1016/j.jmaa.2017.06.056
  • Erhardt, André The Stability of Parabolic Problems with Nonstandard p(x, t)-Growth, Mathematics, Volume 5 (2017) no. 4, p. 50 | DOI:10.3390/math5040050
  • Li, Qifan Very weak solutions of subquadratic parabolic systems with non-standardp(x,t)-growth, Nonlinear Analysis, Volume 156 (2017), p. 17 | DOI:10.1016/j.na.2017.02.011
  • Latvala, Visa; Toivanen, Olli Weak Harnack Estimates for Quasiminimizers with Non-Standard Growth and General Structure, Potential Analysis, Volume 47 (2017) no. 1, p. 21 | DOI:10.1007/s11118-016-9606-6
  • Erhardt, André H. Compact embedding for p(x, t)-Sobolev spaces and existence theory to parabolic equations with p(x, t)-growth, Revista Matemática Complutense, Volume 30 (2017) no. 1, p. 35 | DOI:10.1007/s13163-016-0211-4
  • Youssfi, A.; Azroul, E.; Lahmi, B. Nonlinear parabolic equations with nonstandard growth, Applicable Analysis, Volume 95 (2016) no. 12, p. 2766 | DOI:10.1080/00036811.2015.1111999
  • Gao, Yanchao; Chu, Ying; Gao, Wenjie Existence,uniqueness, and nonexistence of solutions to nonlinear diffusion equations with p ( x , t ) p(x,t) -Laplacian operator, Boundary Value Problems, Volume 2016 (2016) no. 1 | DOI:10.1186/s13661-016-0657-9
  • Han, Yuzhu Long-Time Behavior of Solutions to a Class of Parabolic Equations with Nonstandard Growth Condition, Bulletin of the Malaysian Mathematical Sciences Society, Volume 39 (2016) no. 3, p. 1183 | DOI:10.1007/s40840-015-0230-1
  • Wu, Xiulan The blow-up of solutions form-Laplacian equations with variable sources under positive initial energy, Computers Mathematics with Applications, Volume 72 (2016) no. 9, p. 2516 | DOI:10.1016/j.camwa.2016.09.015
  • Ali, Zakaria Idriss; Sango, Mamadou A note on weak and strong probabilistic solutions for a stochastic quasilinear parabolic equation of generalized polytropic filtration, International Journal of Modern Physics B, Volume 30 (2016) no. 28n29, p. 1640002 | DOI:10.1142/s0217979216400026
  • Erhardt, André H. Higher integrability for solutions to parabolic problems with irregular obstacles and nonstandard growth, Journal of Mathematical Analysis and Applications, Volume 435 (2016) no. 2, p. 1772 | DOI:10.1016/j.jmaa.2015.11.028
  • Winkert, Patrick; Zacher, Rico Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 145 (2016), p. 1 | DOI:10.1016/j.na.2016.06.012
  • Tersenov, Alkis S. The one dimensional parabolic p(x)-Laplace equation, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 3 | DOI:10.1007/s00030-016-0377-y
  • Giacomoni, Jacques; Tiwari, Sweta; Warnault, Guillaume Quasilinear parabolic problem with p(x)-laplacian: existence, uniqueness of weak solutions and stabilization, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 3 | DOI:10.1007/s00030-016-0380-3
  • Liu, Bingchen; Yang, Jie Blow-up properties in the parabolic problems with anisotropic nonstandard growth conditions, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 1 | DOI:10.1007/s00033-015-0613-z
  • Singer, Thomas Existence of weak solutions of parabolic systems with p, q-growth, manuscripta mathematica, Volume 151 (2016) no. 1-2, p. 87 | DOI:10.1007/s00229-016-0827-1
  • Abylkairov, Undasyn Utegenovich; Aitzhanov, Serik Ersultanovich, Volume 1676 (2015), p. 020040 | DOI:10.1063/1.4930466
  • Zou, Weilin; Li, Juan Existence and uniqueness of bounded weak solutions for some nonlinear parabolic problems, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0332-6
  • Lifeng Guo THE DIRICHLET PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS ON RIEMANNIAN MANIFOLDS, Journal of Applied Analysis Computation, Volume 5 (2015) no. 4, p. 562 | DOI:10.11948/2015043
  • Singer, T. PARABOLIC EQUATIONS WITH p,q-GROWTH: THE SUBQUADRATIC CASE, The Quarterly Journal of Mathematics, Volume 66 (2015) no. 2, p. 707 | DOI:10.1093/qmath/hav005
  • Crispo, Francesca A Note on the Existence and Uniqueness of Time-Periodic Electro-rheological Flows, Acta Applicandae Mathematicae, Volume 132 (2014) no. 1, p. 237 | DOI:10.1007/s10440-014-9897-9
  • Alkhutov, Yu A; Zhikov, V V Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent, Sbornik: Mathematics, Volume 205 (2014) no. 3, p. 307 | DOI:10.1070/sm2014v205n03abeh004377
  • Алхутов, Юрий Александрович; Alkhutov, Yuriy Alexandrovich; Жиков, Василий Васильевич; Zhikov, Vasilii Vasil'evich Теоремы существования и единственности решений параболических уравнений с переменным порядком нелинейности, Математический сборник, Volume 205 (2014) no. 3, p. 3 | DOI:10.4213/sm8178
  • Lv, Boqiang; Li, Fengquan; Zou, Weilin Existence of weak solutions for some nonlinear elliptic equations with variable exponents, Complex Variables and Elliptic Equations, Volume 58 (2013) no. 10, p. 1431 | DOI:10.1080/17476933.2012.681648
  • Skrypnik, Igor I. Removability of isolated singularity for anisotropic parabolic equations with absorption, Manuscripta Mathematica, Volume 140 (2013) no. 1-2, p. 145 | DOI:10.1007/s00229-012-0534-5
  • Toivanen, Olli Local boundedness of general minimizers with nonstandard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 81 (2013), p. 62 | DOI:10.1016/j.na.2012.10.024
  • Antontsev, S.; Ferreira, J. Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Analysis: Theory, Methods Applications, Volume 93 (2013), p. 62 | DOI:10.1016/j.na.2013.07.019
  • Akagi, Goro; Matsuura, Kei Nonlinear diffusion equations driven by the p(·)-Laplacian, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 1, p. 37 | DOI:10.1007/s00030-012-0153-6
  • Duzaar, Frank; Habermann, Jens Partial regularity for parabolic systems with non-standard growth, Journal of Evolution Equations, Volume 12 (2012) no. 1, p. 203 | DOI:10.1007/s00028-011-0130-2
  • Bögelein, Verena; Duzaar, Frank Hölder estimates for parabolic p(x, t)-Laplacian systems, Mathematische Annalen, Volume 354 (2012) no. 3, p. 907 | DOI:10.1007/s00208-011-0750-4
  • Baroni, Paolo Regularity in parabolic Dini continuous systems, Forum Mathematicum, Volume 23 (2011) no. 6 | DOI:10.1515/form.2011.049
  • Alkhutov, Yu. A.; Zhikov, V. V. Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent, Journal of Mathematical Sciences, Volume 179 (2011) no. 3, p. 347 | DOI:10.1007/s10958-011-0599-9
  • Lang, Honglei; Liu, Changchun; Li, Zhenbang Some properties of solutions for an evolution p(x)-Laplacian equation, Lobachevskii Journal of Mathematics, Volume 32 (2011) no. 1, p. 48 | DOI:10.1134/s1995080211010082
  • ZHANG, CHAO; ZHOU, SHULIN ENTROPY AND RENORMALIZED SOLUTIONS FOR THEp(x)-LAPLACIAN EQUATION WITH MEASURE DATA, Bulletin of the Australian Mathematical Society, Volume 82 (2010) no. 3, p. 459 | DOI:10.1017/s0004972710000432
  • Alkhutov, Yu. A.; Zhikov, V. V. Existence theorems and qualitative properties of solutions to parabolic equations with a variable order of nonlinearity, Doklady Mathematics, Volume 81 (2010) no. 1, p. 34 | DOI:10.1134/s1064562410010114
  • Zhang, Chao; Zhou, Shulin Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data, Journal of Differential Equations, Volume 248 (2010) no. 6, p. 1376 | DOI:10.1016/j.jde.2009.11.024
  • Fu, Yongqiang; Yu, Mei The Neumann boundary value problem of higher order quasilinear elliptic equation, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4488 | DOI:10.1016/j.na.2010.02.024
  • Harjulehto, Petteri; Hästö, Peter; Lê, Út V.; Nuortio, Matti Overview of differential equations with non-standard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4551 | DOI:10.1016/j.na.2010.02.033
  • Bögelein, Verena; Parviainen, Mikko Self-improving property of nonlinear higher order parabolic systems near the boundary, Nonlinear Differential Equations and Applications NoDEA, Volume 17 (2010) no. 1, p. 21 | DOI:10.1007/s00030-009-0038-5
  • Alkhutov, Yu. A.; Zhikov, V. V. Existence theorems for solutions of parabolic equations with variable order of nonlinearity, Proceedings of the Steklov Institute of Mathematics, Volume 270 (2010) no. 1, p. 15 | DOI:10.1134/s0081543810030028
  • Antontsev, S.; Shmarev, S. On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity, Proceedings of the Steklov Institute of Mathematics, Volume 270 (2010) no. 1, p. 27 | DOI:10.1134/s008154381003003x
  • Bögelein, Verena Partial regularity and singular sets of solutions of higher order parabolic systems, Annali di Matematica Pura ed Applicata, Volume 188 (2009) no. 1, p. 61 | DOI:10.1007/s10231-008-0067-4
  • Fu, Yongqiang The principle of concentration compactness in spaces and its application, Nonlinear Analysis: Theory, Methods Applications, Volume 71 (2009) no. 5-6, p. 1876 | DOI:10.1016/j.na.2009.01.023
  • Lian, Songzhe; Gao, Wenjie; Cao, Chunling; Yuan, Hongjun Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, Journal of Mathematical Analysis and Applications, Volume 342 (2008) no. 1, p. 27 | DOI:10.1016/j.jmaa.2007.11.046
  • Antontsev, S. N.; Shmarev, S. I. Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, Journal of Mathematical Sciences, Volume 150 (2008) no. 5, p. 2289 | DOI:10.1007/s10958-008-0129-6
  • Antontsev, S.; Shmarev, S. Extinction of solutions of parabolic equations with variable anisotropic nonlinearities, Proceedings of the Steklov Institute of Mathematics, Volume 261 (2008) no. 1, p. 11 | DOI:10.1134/s0081543808020028
  • Bögelein, Verena; Zatorska-Goldstein, Anna Higher integrability of very weak solutions of systems of p(x)-Laplacean type, Journal of Mathematical Analysis and Applications, Volume 336 (2007) no. 1, p. 480 | DOI:10.1016/j.jmaa.2007.02.019
  • Antontsev, Stanislav; Shmarev, Sergey Chapter 1 Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Volume 3 (2006), p. 1 | DOI:10.1016/s1874-5733(06)80005-7
  • Mingione, Giuseppe Regularity of minima: An invitation to the dark side of the calculus of variations, Applications of Mathematics, Volume 51 (2006) no. 4, p. 355 | DOI:10.1007/s10778-006-0110-3
  • Antontsev, S.; Shmarev, S. Parabolic Equations with Anisotropic Nonstandard Growth Conditions, Free Boundary Problems, Volume 154 (2006), p. 33 | DOI:10.1007/978-3-7643-7719-9_4
  • Antontsev, Stanislav; Shmarev, Sergei Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions, Nonlinear Analysis: Theory, Methods Applications, Volume 65 (2006) no. 4, p. 728 | DOI:10.1016/j.na.2005.09.035
  • Zhang, Qihu A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, Journal of Mathematical Analysis and Applications, Volume 312 (2005) no. 1, p. 24 | DOI:10.1016/j.jmaa.2005.03.013
  • Antontsev, S.N.; Shmarev, S.I. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Analysis: Theory, Methods Applications, Volume 60 (2005) no. 3, p. 515 | DOI:10.1016/j.na.2004.09.026

Cité par 101 documents. Sources : Crossref