@article{AIHPC_2004__21_1_25_0, author = {Acerbi, E and Mingione, G and Seregin, G. A.}, title = {Regularity results for parabolic systems related to a class of non-newtonian fluids}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {25--60}, publisher = {Elsevier}, volume = {21}, number = {1}, year = {2004}, doi = {10.1016/j.anihpc.2002.11.002}, mrnumber = {2037246}, zbl = {1052.76004}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/} }
TY - JOUR AU - Acerbi, E AU - Mingione, G AU - Seregin, G. A. TI - Regularity results for parabolic systems related to a class of non-newtonian fluids JO - Annales de l'I.H.P. Analyse non linéaire PY - 2004 SP - 25 EP - 60 VL - 21 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/ DO - 10.1016/j.anihpc.2002.11.002 LA - en ID - AIHPC_2004__21_1_25_0 ER -
%0 Journal Article %A Acerbi, E %A Mingione, G %A Seregin, G. A. %T Regularity results for parabolic systems related to a class of non-newtonian fluids %J Annales de l'I.H.P. Analyse non linéaire %D 2004 %P 25-60 %V 21 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/ %R 10.1016/j.anihpc.2002.11.002 %G en %F AIHPC_2004__21_1_25_0
Acerbi, E; Mingione, G; Seregin, G. A. Regularity results for parabolic systems related to a class of non-newtonian fluids. Annales de l'I.H.P. Analyse non linéaire, Tome 21 (2004) no. 1, pp. 25-60. doi : 10.1016/j.anihpc.2002.11.002. https://www.numdam.org/articles/10.1016/j.anihpc.2002.11.002/
[1] Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal. 156 (2001) 121-140. | MR | Zbl
, ,[2] Regularity results for electrorheological fluids: the stationary case, C. R. Acad. Sci. Paris Ser. I 334 (2002) 817-822. | MR | Zbl
, ,[3] Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal. 164 (2002) 213-259. | MR | Zbl
, ,[4] Partial regularity for variational integrals with (s,μ,q)-growth, Calc. Var. Partial Differential Equations 13 (2001) 537-560. | Zbl
, ,[5] M. Bildhauer, M. Fuchs, Variants of the Stokes problem: the case of anisotropic potentials J. Math. Fluid Mechanics, submitted for publication. | MR | Zbl
[6] Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982) 771-831. | MR | Zbl
, , ,[7] On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4) 137 (1984) 83-122. | MR | Zbl
,[8] Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Ser. I 328 (1999) 363-368. | MR | Zbl
, ,[9] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, 2002. | Zbl
[10] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, J. Differential Equations, in press. | MR | Zbl
[11] Full regularity for a class of degenerated parabolic systems in two spatial variables, Manuscripta Math. 99 (1999) 517-539. | MR | Zbl
, ,[12] Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Amer. Math. Soc. Transl. Ser. 2 (1999) 193. | MR | Zbl
, ,[13] Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Math., vol. 1749, Springer, Berlin, 2000. | MR | Zbl
, ,[14] Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci. 22 (1999) 317-351. | MR | Zbl
, ,[15] Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245-248. | EuDML | MR | Zbl
,[16] Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. | MR | Zbl
,[17] On nonlinear problems of continuum mechanics, in: Proc. Internat. Congr. Math. (Moscow 1966), Nauka, Moscow, 1968, pp. 560-573, English translation in: , Amer. Math. Soc. Translation (2) 70 (1968). | Zbl
,[18] New equations for description of motion of viscous incompressible fluids and global solvability of boundary value problems for them, Proc. Steklov Inst. Math. 102 (1967). | Zbl
,[19] On some modifications of the Navier-Stokes equations for large gradient of velocity, Zap. Nauchn. Sem. Leningrad Odtel. Mat. Inst. Steklov (LOMI) 7 (1968) 126-154, English translation in: , Sem. Math. V.A. Steklov Math. Inst. Leningrad 7 (1968). | MR | Zbl
,[20] On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999) 356-387. | MR | Zbl
, ,[21] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1967. | MR | Zbl
, , ,[22] Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994) 497-522. | EuDML | Numdam | MR | Zbl
,[23] Quelques methodes de resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. | MR | Zbl
,[24] P. Marcellini, Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint Dip. Mat. “U. Dini”, Univ. Firenze, 1987.
[25] Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations 90 (1991) 1-30. | MR | Zbl
,[26] The singular set of solutions to non-differentiable elliptic systems, Arch. Rational Mech. Anal. 166 (2003) 287-301. | MR | Zbl
,[27] On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2, Adv. Differential Equations 6 (2001) 257-302. | Zbl
, , ,[28] Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comp., vol. 13, Chapman-Hall, London, 1996. | MR | Zbl
, , , ,[29] Flow of electrorheological materials, Acta Mech. 91 (1992) 57-75. | MR | Zbl
, ,[30] Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001) 59-78. | Zbl
, ,[31] Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000. | MR | Zbl
,[32] Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999) 393-398. | MR | Zbl
,[33] Interior regularity for solutions to the modified Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999) 235-281. | MR | Zbl
,[34] On the number of singular points of weak solutions to the Navier-Stokes equations, Comm. Pure Appl. Math. 54 (2001) 1019-1028. | MR | Zbl
,[35] Navier-Stokes equations with lower bounds on the pressure, Arch. Rational Mech. Anal. 163 (2002) 65-86. | MR | Zbl
, ,[36] Navier-Stokes equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1984. | MR | Zbl
,[37] Meyers type estimates for solving the nonlinear Stokes system, Differential Equations 33 (1997) 107-114. | MR | Zbl
,- Fine Boundary Continuity for Degenerate Double-Phase Diffusion, Potential Analysis (2025) | DOI:10.1007/s11118-025-10198-0
- Optimal global second-order regularity and improved integrability for parabolic equations with variable growth, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0016
- Temporal Regularity of Symmetric Stochastic p-Stokes Systems, Journal of Mathematical Fluid Mechanics, Volume 26 (2024) no. 2 | DOI:10.1007/s00021-024-00852-9
- The impact of intrinsic scaling on the rate of extinction for anisotropic non-Newtonian fast diffusion, Nonlinear Analysis, Volume 242 (2024), p. 113497 | DOI:10.1016/j.na.2024.113497
- Sharp Regularity Estimates for a Singular Inhomogeneous (m, p)-Laplacian Equation, Potential Analysis (2024) | DOI:10.1007/s11118-024-10164-2
- On an Application of Phragmén–Lindelöf Method to Singular Fractional-Order Problem, Results in Mathematics, Volume 79 (2024) no. 2 | DOI:10.1007/s00025-023-02089-w
- Pseudoparabolic equations with variable exponents and coefficients: blow-up and large time behaviors, Applicable Analysis, Volume 102 (2023) no. 6, p. 1786 | DOI:10.1080/00036811.2021.2003342
- Parabolic Harnack Estimates for anisotropic slow diffusion, Journal d'Analyse Mathématique, Volume 149 (2023) no. 2, p. 611 | DOI:10.1007/s11854-022-0261-0
- Non-Newtonian fluids with discontinuous-in-time stress tensor, Journal of Functional Analysis, Volume 285 (2023) no. 2, p. 109943 | DOI:10.1016/j.jfa.2023.109943
- Hyperbolic Stokes system of the third order with variable exponent of nonlinearity, Matematychni Metody Ta Fizyko-Mekhanichni Polya, Volume 66 (2023) no. 1-2 | DOI:10.15407/mmpmf2023.66.1-2.48-62
- Non-isothermal non-Newtonian fluids: The stationary case, Mathematical Models and Methods in Applied Sciences, Volume 33 (2023) no. 09, p. 1747 | DOI:10.1142/s0218202523500410
- Blow-up and Bounds of Solutions for a Class of Semi-Linear PseudoParabolic Equations with p(. )-Laplacian Viscoelastic Term, WSEAS TRANSACTIONS ON FLUID MECHANICS, Volume 18 (2023), p. 157 | DOI:10.37394/232013.2023.18.16
- On a p⋅-biharmonic problem of Kirchhoff type involving critical growth, Applicable Analysis, Volume 101 (2022) no. 16, p. 5700 | DOI:10.1080/00036811.2021.1903445
- Hölder regularity for degenerate parabolic equations with variable exponents, Boletim da Sociedade Paranaense de Matemática, Volume 40 (2022), p. 1 | DOI:10.5269/bspm.42376
- The boundedness and Hölder continuity of weak solutions to elliptic equations involving variable exponents and critical growth, Journal of Differential Equations, Volume 313 (2022), p. 503 | DOI:10.1016/j.jde.2022.01.004
- Classification of blow-up and global existence of solutions to an initial Neumann problem, Journal of Differential Equations, Volume 340 (2022), p. 45 | DOI:10.1016/j.jde.2022.08.036
- Partial regularity for degenerate parabolic systems with nonstandard growth and discontinuous coefficients, Journal of Mathematical Analysis and Applications, Volume 514 (2022) no. 2, p. 126316 | DOI:10.1016/j.jmaa.2022.126316
- Gradient estimates for Orlicz double phase problems with variable exponents, Nonlinear Analysis, Volume 221 (2022), p. 112891 | DOI:10.1016/j.na.2022.112891
- Geometric estimates for doubly nonlinear parabolic PDEs, Nonlinearity, Volume 35 (2022) no. 5, p. 2334 | DOI:10.1088/1361-6544/ac636e
- A remark on finite element approximation of singular parabolic p(x, t)-Laplacian equation, Acta Scientiarum Mathematicarum, Volume 87 (2021) no. 1-2, p. 107 | DOI:10.14232/actasm-019-762-1
- Local continuity of singular anisotropic parabolic equations with variable growth, Complex Variables and Elliptic Equations, Volume 66 (2021) no. 12, p. 1998 | DOI:10.1080/17476933.2020.1797705
- Strong solutions of evolution equations with p(x,t)-Laplacian: Existence, global higher integrability of the gradients and second-order regularity, Journal of Mathematical Analysis and Applications, Volume 493 (2021) no. 1, p. 124506 | DOI:10.1016/j.jmaa.2020.124506
- Hölder continuity of singular parabolic equations with variable nonlinearity, Analele Universitatii "Ovidius" Constanta - Seria Matematica, Volume 28 (2020) no. 3, p. 51 | DOI:10.2478/auom-2020-0034
- Existence and uniqueness of weak solutions to parabolic problems with nonstandard growth and cross diffusion, Electronic Journal of Differential Equations, Volume 2020 (2020) no. 01-132, p. 123 | DOI:10.58997/ejde.2020.123
- Space-time approximation of parabolic systems with variable growth, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 4, p. 2505 | DOI:10.1093/imanum/drz039
- Doubly nonlinear equation involving p(x)-homogeneous operators: Local existence, uniqueness and global behaviour, Journal of Mathematical Analysis and Applications, Volume 487 (2020) no. 2, p. 124009 | DOI:10.1016/j.jmaa.2020.124009
- Weighted L(⋅)-estimates for the nonlinear parabolic equations with non-standard growth, Journal of Mathematical Analysis and Applications, Volume 489 (2020) no. 1, p. 124145 | DOI:10.1016/j.jmaa.2020.124145
- Regularity of weak solutions to a class of nonlinear problem with non-standard growth conditions, Journal of Mathematical Physics, Volume 61 (2020) no. 9 | DOI:10.1063/5.0010026
- Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity, Nonlinear Analysis, Volume 195 (2020), p. 111724 | DOI:10.1016/j.na.2019.111724
- Sharp regularity estimates for quasilinear evolution equations, Israel Journal of Mathematics, Volume 231 (2019) no. 1, p. 25 | DOI:10.1007/s11856-019-1842-1
- Inverse Problem for an Equation with A Nonstandard Growth Condition, Journal of Applied Mechanics and Technical Physics, Volume 60 (2019) no. 2, p. 265 | DOI:10.1134/s0021894419020081
- GeometricC1+αregularity estimates for nonlinear evolution models, Nonlinear Analysis, Volume 184 (2019), p. 95 | DOI:10.1016/j.na.2019.01.031
- Electro-rheological fluids under random influences: martingale and strong solutions, Stochastics and Partial Differential Equations: Analysis and Computations, Volume 7 (2019) no. 4, p. 699 | DOI:10.1007/s40072-019-00138-6
- Hölder continuity of weak solution to a nonlinear problem with non-standard growth conditions, Boundary Value Problems, Volume 2018 (2018) no. 1 | DOI:10.1186/s13661-018-1051-6
- Quasilinear parabolic problem with variable exponent: Qualitative analysis and stabilization, Communications in Contemporary Mathematics, Volume 20 (2018) no. 08, p. 1750065 | DOI:10.1142/s0219199717500651
- Regularity for parabolic equations with time dependent growth, Journal de Mathématiques Pures et Appliquées, Volume 120 (2018), p. 253 | DOI:10.1016/j.matpur.2018.04.003
- Global higher regularity of solutions to singular p(x,t)-parabolic equations, Journal of Mathematical Analysis and Applications, Volume 466 (2018) no. 1, p. 238 | DOI:10.1016/j.jmaa.2018.05.075
- Regularity for the weak solutions to certain parabolic systems under certain growth condition, Journal of Mathematical Analysis and Applications, Volume 468 (2018) no. 1, p. 324 | DOI:10.1016/j.jmaa.2018.08.014
- On the continuity of solutions of the nonhomogeneous evolutionp(x,t)-Laplace equation, Nonlinear Analysis, Volume 167 (2018), p. 67 | DOI:10.1016/j.na.2017.11.002
- Lipschitz regularity for viscosity solutions to parabolic
-Laplacian equations on Riemannian manifolds, Nonlinear Differential Equations and Applications NoDEA, Volume 25 (2018) no. 4 | DOI:10.1007/s00030-018-0519-5 - Existence of weak solutions for non-stationary flows of fluids with shear thinning dependent viscosities under slip boundary conditions in half space, Science China Mathematics, Volume 61 (2018) no. 4, p. 727 | DOI:10.1007/s11425-016-0686-1
- The Cauchy–Dirichlet problem for a general class of parabolic equations, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 3, p. 593 | DOI:10.1016/j.anihpc.2016.03.003
- A new kind of the solutions of a convection-diffusion equation related to the p ( x )
-Laplacian, Boundary Value Problems, Volume 2017 (2017) no. 1 | DOI:10.1186/s13661-017-0848-z - Weighted Lorentz estimates for parabolic equations with non-standard growth on rough domains, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 6 | DOI:10.1007/s00526-017-1273-y
- Study of solutions to a class of certain parabolic systems with variable exponents, International Journal for Simulation and Multidisciplinary Design Optimization, Volume 8 (2017), p. A11 | DOI:10.1051/smdo/2017004
- Diffusion Convection Equation with Variable Nonlinearities, Journal of Function Spaces, Volume 2017 (2017), p. 1 | DOI:10.1155/2017/2397474
- Existence of weak solutions of doubly nonlinear parabolic equations, Journal of Mathematical Analysis and Applications, Volume 455 (2017) no. 1, p. 842 | DOI:10.1016/j.jmaa.2017.06.024
- Partial regularity of a certain class of non-Newtonian fluids, Journal of Mathematical Analysis and Applications, Volume 455 (2017) no. 2, p. 1529 | DOI:10.1016/j.jmaa.2017.06.049
- Generalized Kelvin–Voigt equations with p-Laplacian and source/absorption terms, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 1, p. 99 | DOI:10.1016/j.jmaa.2017.06.056
- The Stability of Parabolic Problems with Nonstandard p(x, t)-Growth, Mathematics, Volume 5 (2017) no. 4, p. 50 | DOI:10.3390/math5040050
- Very weak solutions of subquadratic parabolic systems with non-standardp(x,t)-growth, Nonlinear Analysis, Volume 156 (2017), p. 17 | DOI:10.1016/j.na.2017.02.011
- Weak Harnack Estimates for Quasiminimizers with Non-Standard Growth and General Structure, Potential Analysis, Volume 47 (2017) no. 1, p. 21 | DOI:10.1007/s11118-016-9606-6
- Compact embedding for p(x, t)-Sobolev spaces and existence theory to parabolic equations with p(x, t)-growth, Revista Matemática Complutense, Volume 30 (2017) no. 1, p. 35 | DOI:10.1007/s13163-016-0211-4
- Nonlinear parabolic equations with nonstandard growth, Applicable Analysis, Volume 95 (2016) no. 12, p. 2766 | DOI:10.1080/00036811.2015.1111999
- Existence,uniqueness, and nonexistence of solutions to nonlinear diffusion equations with p ( x , t )
-Laplacian operator, Boundary Value Problems, Volume 2016 (2016) no. 1 | DOI:10.1186/s13661-016-0657-9 - Long-Time Behavior of Solutions to a Class of Parabolic Equations with Nonstandard Growth Condition, Bulletin of the Malaysian Mathematical Sciences Society, Volume 39 (2016) no. 3, p. 1183 | DOI:10.1007/s40840-015-0230-1
- The blow-up of solutions form-Laplacian equations with variable sources under positive initial energy, Computers Mathematics with Applications, Volume 72 (2016) no. 9, p. 2516 | DOI:10.1016/j.camwa.2016.09.015
- A note on weak and strong probabilistic solutions for a stochastic quasilinear parabolic equation of generalized polytropic filtration, International Journal of Modern Physics B, Volume 30 (2016) no. 28n29, p. 1640002 | DOI:10.1142/s0217979216400026
- Higher integrability for solutions to parabolic problems with irregular obstacles and nonstandard growth, Journal of Mathematical Analysis and Applications, Volume 435 (2016) no. 2, p. 1772 | DOI:10.1016/j.jmaa.2015.11.028
- Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 145 (2016), p. 1 | DOI:10.1016/j.na.2016.06.012
- The one dimensional parabolic p(x)-Laplace equation, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 3 | DOI:10.1007/s00030-016-0377-y
- Quasilinear parabolic problem with p(x)-laplacian: existence, uniqueness of weak solutions and stabilization, Nonlinear Differential Equations and Applications NoDEA, Volume 23 (2016) no. 3 | DOI:10.1007/s00030-016-0380-3
- Blow-up properties in the parabolic problems with anisotropic nonstandard growth conditions, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 1 | DOI:10.1007/s00033-015-0613-z
- Existence of weak solutions of parabolic systems with p, q-growth, manuscripta mathematica, Volume 151 (2016) no. 1-2, p. 87 | DOI:10.1007/s00229-016-0827-1
- , Volume 1676 (2015), p. 020040 | DOI:10.1063/1.4930466
- Existence and uniqueness of bounded weak solutions for some nonlinear parabolic problems, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0332-6
- THE DIRICHLET PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS ON RIEMANNIAN MANIFOLDS, Journal of Applied Analysis Computation, Volume 5 (2015) no. 4, p. 562 | DOI:10.11948/2015043
- PARABOLIC EQUATIONS WITH p,q-GROWTH: THE SUBQUADRATIC CASE, The Quarterly Journal of Mathematics, Volume 66 (2015) no. 2, p. 707 | DOI:10.1093/qmath/hav005
- A Note on the Existence and Uniqueness of Time-Periodic Electro-rheological Flows, Acta Applicandae Mathematicae, Volume 132 (2014) no. 1, p. 237 | DOI:10.1007/s10440-014-9897-9
- Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent, Sbornik: Mathematics, Volume 205 (2014) no. 3, p. 307 | DOI:10.1070/sm2014v205n03abeh004377
- Теоремы существования и единственности решений параболических уравнений с переменным порядком нелинейности, Математический сборник, Volume 205 (2014) no. 3, p. 3 | DOI:10.4213/sm8178
- Existence of weak solutions for some nonlinear elliptic equations with variable exponents, Complex Variables and Elliptic Equations, Volume 58 (2013) no. 10, p. 1431 | DOI:10.1080/17476933.2012.681648
- Removability of isolated singularity for anisotropic parabolic equations with absorption, Manuscripta Mathematica, Volume 140 (2013) no. 1-2, p. 145 | DOI:10.1007/s00229-012-0534-5
- Local boundedness of general minimizers with nonstandard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 81 (2013), p. 62 | DOI:10.1016/j.na.2012.10.024
- Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Analysis: Theory, Methods Applications, Volume 93 (2013), p. 62 | DOI:10.1016/j.na.2013.07.019
- Nonlinear diffusion equations driven by the p(·)-Laplacian, Nonlinear Differential Equations and Applications NoDEA, Volume 20 (2013) no. 1, p. 37 | DOI:10.1007/s00030-012-0153-6
- Partial regularity for parabolic systems with non-standard growth, Journal of Evolution Equations, Volume 12 (2012) no. 1, p. 203 | DOI:10.1007/s00028-011-0130-2
- Hölder estimates for parabolic p(x, t)-Laplacian systems, Mathematische Annalen, Volume 354 (2012) no. 3, p. 907 | DOI:10.1007/s00208-011-0750-4
- Regularity in parabolic Dini continuous systems, Forum Mathematicum, Volume 23 (2011) no. 6 | DOI:10.1515/form.2011.049
- Hölder continuity of solutions of parabolic equations with variable nonlinearity exponent, Journal of Mathematical Sciences, Volume 179 (2011) no. 3, p. 347 | DOI:10.1007/s10958-011-0599-9
- Some properties of solutions for an evolution p(x)-Laplacian equation, Lobachevskii Journal of Mathematics, Volume 32 (2011) no. 1, p. 48 | DOI:10.1134/s1995080211010082
- ENTROPY AND RENORMALIZED SOLUTIONS FOR THEp(x)-LAPLACIAN EQUATION WITH MEASURE DATA, Bulletin of the Australian Mathematical Society, Volume 82 (2010) no. 3, p. 459 | DOI:10.1017/s0004972710000432
- Existence theorems and qualitative properties of solutions to parabolic equations with a variable order of nonlinearity, Doklady Mathematics, Volume 81 (2010) no. 1, p. 34 | DOI:10.1134/s1064562410010114
- Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and L1 data, Journal of Differential Equations, Volume 248 (2010) no. 6, p. 1376 | DOI:10.1016/j.jde.2009.11.024
- The Neumann boundary value problem of higher order quasilinear elliptic equation, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4488 | DOI:10.1016/j.na.2010.02.024
- Overview of differential equations with non-standard growth, Nonlinear Analysis: Theory, Methods Applications, Volume 72 (2010) no. 12, p. 4551 | DOI:10.1016/j.na.2010.02.033
- Self-improving property of nonlinear higher order parabolic systems near the boundary, Nonlinear Differential Equations and Applications NoDEA, Volume 17 (2010) no. 1, p. 21 | DOI:10.1007/s00030-009-0038-5
- Existence theorems for solutions of parabolic equations with variable order of nonlinearity, Proceedings of the Steklov Institute of Mathematics, Volume 270 (2010) no. 1, p. 15 | DOI:10.1134/s0081543810030028
- On the blow-up of solutions to anisotropic parabolic equations with variable nonlinearity, Proceedings of the Steklov Institute of Mathematics, Volume 270 (2010) no. 1, p. 27 | DOI:10.1134/s008154381003003x
- Partial regularity and singular sets of solutions of higher order parabolic systems, Annali di Matematica Pura ed Applicata, Volume 188 (2009) no. 1, p. 61 | DOI:10.1007/s10231-008-0067-4
- The principle of concentration compactness in spaces and its application, Nonlinear Analysis: Theory, Methods Applications, Volume 71 (2009) no. 5-6, p. 1876 | DOI:10.1016/j.na.2009.01.023
- Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, Journal of Mathematical Analysis and Applications, Volume 342 (2008) no. 1, p. 27 | DOI:10.1016/j.jmaa.2007.11.046
- Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, Journal of Mathematical Sciences, Volume 150 (2008) no. 5, p. 2289 | DOI:10.1007/s10958-008-0129-6
- Extinction of solutions of parabolic equations with variable anisotropic nonlinearities, Proceedings of the Steklov Institute of Mathematics, Volume 261 (2008) no. 1, p. 11 | DOI:10.1134/s0081543808020028
- Higher integrability of very weak solutions of systems of p(x)-Laplacean type, Journal of Mathematical Analysis and Applications, Volume 336 (2007) no. 1, p. 480 | DOI:10.1016/j.jmaa.2007.02.019
- Chapter 1 Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Volume 3 (2006), p. 1 | DOI:10.1016/s1874-5733(06)80005-7
- Regularity of minima: An invitation to the dark side of the calculus of variations, Applications of Mathematics, Volume 51 (2006) no. 4, p. 355 | DOI:10.1007/s10778-006-0110-3
- Parabolic Equations with Anisotropic Nonstandard Growth Conditions, Free Boundary Problems, Volume 154 (2006), p. 33 | DOI:10.1007/978-3-7643-7719-9_4
- Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions, Nonlinear Analysis: Theory, Methods Applications, Volume 65 (2006) no. 4, p. 728 | DOI:10.1016/j.na.2005.09.035
- A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, Journal of Mathematical Analysis and Applications, Volume 312 (2005) no. 1, p. 24 | DOI:10.1016/j.jmaa.2005.03.013
- A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Analysis: Theory, Methods Applications, Volume 60 (2005) no. 3, p. 515 | DOI:10.1016/j.na.2004.09.026
Cité par 101 documents. Sources : Crossref