@article{AIHPC_1998__15_2_127_0, author = {Del Pino, Manuel and Felmer, Patricio L.}, title = {Multi-peak bound states for nonlinear {Schr\"odinger} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {127--149}, publisher = {Gauthier-Villars}, volume = {15}, number = {2}, year = {1998}, mrnumber = {1614646}, zbl = {0901.35023}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1998__15_2_127_0/} }
TY - JOUR AU - Del Pino, Manuel AU - Felmer, Patricio L. TI - Multi-peak bound states for nonlinear Schrödinger equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 1998 SP - 127 EP - 149 VL - 15 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1998__15_2_127_0/ LA - en ID - AIHPC_1998__15_2_127_0 ER -
%0 Journal Article %A Del Pino, Manuel %A Felmer, Patricio L. %T Multi-peak bound states for nonlinear Schrödinger equations %J Annales de l'I.H.P. Analyse non linéaire %D 1998 %P 127-149 %V 15 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1998__15_2_127_0/ %G en %F AIHPC_1998__15_2_127_0
Del Pino, Manuel; Felmer, Patricio L. Multi-peak bound states for nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 2, pp. 127-149. http://www.numdam.org/item/AIHPC_1998__15_2_127_0/
[1] Uniqueness of the ground state solutions of Δu + f(u) = 0 in RN, N > 3 . Comm. in P.D.E. 16. Vol. 8-9, 1991, pp. 1549-1572. | MR | Zbl
and ,[2] Homoclinic type solutions for semilinear elliptic PDE on RN'. Comm. Pure and Applied Math, Vol. XLV, 1992, pp. 1217-1269. | MR | Zbl
and ,[3] Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE, Vol. 4, 1996. pp. 121-137. | MR | Zbl
and ,[4] Existence and non-existence results for semilinear problems in unbounded domains. Proc. Roy. Soc. Edin., Vol. 93A, 1982, pp. 1-14. | MR | Zbl
and[5] Nonspreading Wave Packets for the Cubic Schrödinger Equation with a Bounded Potential, Journal of Functional analysis, Vol. 69, 1986, pp. 397-408. | MR | Zbl
and ,[6] Uniqueness of positive solutions of Δu + f(u) = 0 in an annulus Differential and Integral Equations , Vol. 4, 1991, pp. 583-599. | MR | Zbl
and ,[7] The concentration-compactness principle in the calculus of variations. The locally compact case. Part II Analyse Nonlin., Vol. 1, 1984, pp. 223-283. | Numdam | MR | Zbl
,[8] Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a. Comm. Partial Diff., Eq. Vol. 13, 1988, pp. 1499-1519. | Zbl
,[9] Corrections to Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a., Comm. Partial Diff. Eq. Vol. 14, 1989, pp. 833-834. | Zbl
,[10] On positive multi-lump bound states nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys., Vol. 131, 1990, pp. 223-253. | MR | Zbl
,[111 On a class of nonlinear Schrödinger equations, Z. angew Math Phys, Vol. 43, 1992, pp. 270-291. | MR | Zbl
,[12] Ph. D. Thesis University of Wisconsin, 1994.
,[13] Ph. D. Thesis University of Wisconsin, 1995.
,[14] On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys., Vol. 153, No 2, 1993, pp. 229-244. | MR | Zbl
,