@article{AIHPC_1990__7_1_27_0, author = {Benci, Vieri and Fortunato, Donato}, title = {Existence of geodesics for the {Lorentz} metric of a stationary gravitational field}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {27--35}, publisher = {Gauthier-Villars}, volume = {7}, number = {1}, year = {1990}, mrnumber = {1046082}, zbl = {0697.58011}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1990__7_1_27_0/} }
TY - JOUR AU - Benci, Vieri AU - Fortunato, Donato TI - Existence of geodesics for the Lorentz metric of a stationary gravitational field JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 27 EP - 35 VL - 7 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1990__7_1_27_0/ LA - en ID - AIHPC_1990__7_1_27_0 ER -
%0 Journal Article %A Benci, Vieri %A Fortunato, Donato %T Existence of geodesics for the Lorentz metric of a stationary gravitational field %J Annales de l'I.H.P. Analyse non linéaire %D 1990 %P 27-35 %V 7 %N 1 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1990__7_1_27_0/ %G en %F AIHPC_1990__7_1_27_0
Benci, Vieri; Fortunato, Donato. Existence of geodesics for the Lorentz metric of a stationary gravitational field. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 1, pp. 27-35. http://www.numdam.org/item/AIHPC_1990__7_1_27_0/
[1] Essais de géométrie riemannienne hyperbolique globale. Application à la Relativité Générale, Ann. Inst. Fourier, Vol. 132, 1963, pp. 105-190. | Numdam | MR | Zbl
,[2] Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity, Journal of nonlinear Anal. T.M.A., Vol. 7, 1983, pp.981-1012. | MR | Zbl
, and ,[3] The Large scale Structure of Space-Time, Cambridge University Press, 1973. | MR | Zbl
and ,[4] Théorie des champs, Mir, 1970.
and ,[5] Techniques of Differential Topology in Relativity, Conference board of Math. Sc., Vol. 7, S.I.A.M., 1972. | MR | Zbl
,[6] Some Mini-Max Theorems and Applications to Nonlinear Partial Differential Equations, Nonlinear Analysis, CESARI, KANNAN, WEINBERGER Ed., Academic Press, 1978, pp. 161-177. | MR | Zbl
,[7] Mini-Max Methods in Critical Point Theory with Applications to Differential Equations, Conf. board Math. Sc. A.M.S., Vol. 65, 1986. | Zbl
,[8] Global Connectivity by Time Like Geodesic, Zs. f. Naturfor., Vol. 22 a, 1967, pp. 1256-1360. | MR | Zbl
,