Nous démontrons deux théorèmes d’universalité pour les tenseurs aléatoires de rang
We prove two universality results for random tensors of arbitrary rank
Mots-clés : random tensors, large
@article{AIHPB_2014__50_4_1474_0, author = {Gurau, Razvan}, title = {Universality for random tensors}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1474--1525}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP567}, mrnumber = {3270002}, zbl = {06377562}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP567/} }
TY - JOUR AU - Gurau, Razvan TI - Universality for random tensors JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1474 EP - 1525 VL - 50 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP567/ DO - 10.1214/13-AIHP567 LA - en ID - AIHPB_2014__50_4_1474_0 ER -
Gurau, Razvan. Universality for random tensors. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1474-1525. doi : 10.1214/13-AIHP567. https://www.numdam.org/articles/10.1214/13-AIHP567/
[1] Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive Physics. V. Rivasseau (Ed). Lecture Notes in Physics 446. Springer, Berlin, 1995. | MR | Zbl
and .[2] Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6 (1991) 1133-1146. | MR | Zbl
, and .[3] An Introduction to Random Matrices. Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl
, and .[4] A renormalizable 4-dimensional tensor field theory. Comm. Math. Phys. 318 69-109. Available at arXiv:1111.4997 [hep-th]. | MR | Zbl
and .
[5] Critical behavior of colored tensor models in the large
[6] Random tensor models in the large
[7] Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. 17 (2003) 953-982. Available at arXiv:math-ph/0205010. | MR | Zbl
.[8] Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys. 264 (2006) 773-795. Available at arXiv:math-ph/0402073. | MR | Zbl
and .[9] Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203-242. Available at arXiv:hep-th/9808042. | MR | Zbl
and .[10] Insertion and elimination: The doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3 (2002) 411-433. Available at arXiv:hep-th/0201157. | MR | Zbl
and .[11] Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3 (1962) 140-156. | MR | Zbl
.[12] Correlations between eigenvalues of a random matrix. Comm. Math. Phys. 19 (1970) 235-250. | MR | Zbl
.[13] Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. Available at arXiv:1004.0861v2 [math-ph]. | MR | Zbl
.[14] Renormalization theory in four-dimensional scalar fields. I. Comm. Math. Phys. 100 (1985) 545-590. | MR
and .[15] Quantum Physics. A Functional Integral Point of View, 2nd edition. Springer, New York, 1987. | MR | Zbl
and .
[16] Tensor models and simplicial quantum gravity in
[17] Renormalization of
[18] Lost in translation: Topological singularities in group field theory. Class. Quant. Grav. 27 (2010) 235023. Available at arXiv:1006.0714 [hep-th]. | MR | Zbl
.
[19] The
[20] The complete
[21] Colored group field theory. Comm. Math. Phys. 304 (2011) 69-93. Available at arXiv:0907.2582 [hep-th]. | MR | Zbl
.[22] A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852 (2011) 592-614. Available at arXiv:1105.6072 [hep-th]. | MR | Zbl
.
[23] The
[24] Colored tensor models - A review. SIGMA 8 (2012) 020. Available at arXiv:1109.4812 [hep-th]. | MR | Zbl
and .[25] Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences 141. Springer, Berlin, 2004. | MR | Zbl
, , and .[26] Elementary acceleration and multisummability I. Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 331-401. | Numdam | MR | Zbl
and .[27] Random Matrices. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam, 2004. | MR | Zbl
.[28] Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
and .[29] Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI, 2011. | MR | Zbl
and .[30] From Perturbative to Constructive Renormalization, 2nd edition. Princeton Univ. Press, Princeton, 1991. | MR
.[31] Constructive matrix theory. JHEP 0709 (2007) 008. Available at arXiv:0706.1224 [hep-th]. | MR
.
[32] Loop vertex expansion for
[33] An improvement of Watson's theorem on Borel summability. J. Math. Phys. 21 (1980) 261-263. | MR | Zbl
.[34] Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611-628. | MR | Zbl
.[35] G. 't Hooft. A planar diagram theory for strong interactions. Nucl. Phys. B 72 (1974) 461-473.
[36] Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 (1) (2011) 127-204. Available at arXiv:0906.0510v10. | MR | Zbl
and .
[37] Symmetries of some reduced free product
[38] Limit laws for random matrices and free products. Invent. Math. 104 (1991) 201-220. | MR | Zbl
.[39] Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. | MR | Zbl
, and .Cité par Sources :