En 1992, Speicher a montré que les mesures de probabilités jouant le rôle des lois gaussiennes dans les différentes théories des probabilités non-commutatives (probabilités fermioniques, probabilités libres à la Voiculescu, probabilités
In 1992, Speicher showed the fundamental fact that the probability measures playing the role of the classical Gaussian in the various non-commutative probability theories (viz. fermionic probability, Voiculescu’s free probability, and
Mots-clés : central limit theorem, free probability, random matrices,
@article{AIHPB_2014__50_4_1456_0, author = {Blitvi\'c, Natasha}, title = {Two-parameter non-commutative {Central} {Limit} {Theorem}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1456--1473}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP550}, mrnumber = {3270001}, zbl = {06377561}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP550/} }
TY - JOUR AU - Blitvić, Natasha TI - Two-parameter non-commutative Central Limit Theorem JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1456 EP - 1473 VL - 50 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP550/ DO - 10.1214/13-AIHP550 LA - en ID - AIHPB_2014__50_4_1456_0 ER -
%0 Journal Article %A Blitvić, Natasha %T Two-parameter non-commutative Central Limit Theorem %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1456-1473 %V 50 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP550/ %R 10.1214/13-AIHP550 %G en %F AIHPB_2014__50_4_1456_0
Blitvić, Natasha. Two-parameter non-commutative Central Limit Theorem. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1456-1473. doi : 10.1214/13-AIHP550. https://www.numdam.org/articles/10.1214/13-AIHP550/
[1] Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17 (1976) 524-527. | MR | Zbl
and .[2] Free hypercontractivity. Comm. Math. Phys. 184 (1997) 457-474. | MR | Zbl
.[3] Free probability for probabilists. In Quantum Probability Communications, Vol. XI (Grenoble, 1998), QP-PQ, XI 55-71. World Sci. Publ., River Edge, NJ, 2003. | MR | Zbl
.
[4] The quantum group
[5] The
[6]
[7] An example of a generalized Brownian motion. Comm. Math. Phys. 137 (1991) 519-531. | MR | Zbl
and .
[8] Generalized
[9] Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities. Comm. Math. Phys. 155 (1993) 27-46. | MR | Zbl
and .
[10] A
[11] Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc. 359 (2007) 1555-1575 (electronic). | MR | Zbl
, , , and .[12] Parastochastics. J. Math. Phys. 11 (1970) 364-390. | MR | Zbl
and .
[13] Asymptotics of
[14] Transformation functions in the complex domain. Progr. Theoret. Phys. 6 (1951) 524-528. | MR
.[15] Distribution of crossings, nestings and alignments of two edges in matchings and partitions. Electron. J. Combin. 13 (2006) Research Paper 33, 12 pp. (electronic). | MR | Zbl
and .[16] Hypercontractivity in non-commutative holomorphic spaces. Comm. Math. Phys. 259 (2005) 615-637. | MR | Zbl
.
[17] Products of random matrices and
[18] On identities concerning the numbers of crossings and nestings of two edges in matchings. SIAM J. Discrete Math. 20 (2006) 960-976. | MR | Zbl
.
[19] On
[20] Products of correlated symmetric matrices and
[21] Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
and .[22] A noncommutative central limit theorem. Math. Z. 209 (1992) 55-66. | EuDML | MR | Zbl
.[23] Addition of certain noncommuting random variables. J. Funct. Anal. 66 (1986) 323-346. | MR | Zbl
.[24] Free Random Variables. CRM Monograph Series 1. American Mathematical Society, Providence, RI, 1992. | MR | Zbl
, and .Cité par Sources :