Nous étudions la transience/récurrence d’un processus de diffusion non-Markovien à une dimension, consistant en un mouvement brownien avec une dérive non anticipative qui a deux phases - un mode transitoire à
We investigate the transience/recurrence of a non-Markovian, one-dimensional diffusion process which consists of a Brownian motion with a non-anticipating drift that has two phases - a transient to
Mots-clés : diffusion process, transience, recurrence, non-markovian drift
@article{AIHPB_2014__50_4_1198_0, author = {Pinsky, Ross G.}, title = {Transience, recurrence and speed of diffusions with a non-markovian two-phase {\textquotedblleft}use it or lose it{\textquotedblright} drift}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1198--1212}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP549}, mrnumber = {3269991}, zbl = {06377551}, language = {en}, url = {https://www.numdam.org/articles/10.1214/13-AIHP549/} }
TY - JOUR AU - Pinsky, Ross G. TI - Transience, recurrence and speed of diffusions with a non-markovian two-phase “use it or lose it” drift JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1198 EP - 1212 VL - 50 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/13-AIHP549/ DO - 10.1214/13-AIHP549 LA - en ID - AIHPB_2014__50_4_1198_0 ER -
%0 Journal Article %A Pinsky, Ross G. %T Transience, recurrence and speed of diffusions with a non-markovian two-phase “use it or lose it” drift %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1198-1212 %V 50 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/13-AIHP549/ %R 10.1214/13-AIHP549 %G en %F AIHPB_2014__50_4_1198_0
Pinsky, Ross G. Transience, recurrence and speed of diffusions with a non-markovian two-phase “use it or lose it” drift. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1198-1212. doi : 10.1214/13-AIHP549. https://www.numdam.org/articles/10.1214/13-AIHP549/
[1] The strong law of large numbers for a Brownian polymer. Ann. Probab. 24 (1996) 1300-1323. | MR | Zbl
and .
[2] Weak limits of perturbed random walks and the equation
[3] Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113 (1999) 501-518. | MR | Zbl
.[4] Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields 92 (1992) 337-349. | MR | Zbl
and .[6] Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland, Amsterdam, 1989. | MR | Zbl
and .[7] Excited random walks: Results, methods, open problems. Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013) 105-157. | MR
and .[8] An asymptotic result for Brownian polymers. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 29-46. | Numdam | MR | Zbl
and .[9] A survey of random processes with reinforcement. Probab. Surv. 4 (2007) 1-79. | MR | Zbl
.[10] Positive Harmonic Functions and Diffusion. Cambridge Studies in Advanced Mathematics 45. Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl
.[11] One-dimensional diffusions that eventually stop down-crossing. Bull. Lond. Math. Soc. 42 (2010) 634-638. | MR | Zbl
.[12] Excited Brownian motions as limits of excited random walks. Probab. Theory Related Fields 154 (2012) 875-909. | MR | Zbl
and .[13] Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837. Springer, Berlin, 2004. | MR | Zbl
.Cité par Sources :