Nous considérons des processus régénératifs à valeurs dans un espace polonais quelconque. Nous définissons leurs excursions
We consider regenerative processes with values in some general Polish space. We define their
Mots-clés : regenerative process, excursion theory, excursion measure, weak convergence, queueing theory
@article{AIHPB_2014__50_2_492_0, author = {Lambert, Amaury and Simatos, Florian}, title = {The weak convergence of regenerative processes using some excursion path decompositions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {492--511}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP531}, mrnumber = {3189081}, zbl = {1291.60179}, language = {en}, url = {https://www.numdam.org/articles/10.1214/12-AIHP531/} }
TY - JOUR AU - Lambert, Amaury AU - Simatos, Florian TI - The weak convergence of regenerative processes using some excursion path decompositions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 492 EP - 511 VL - 50 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/12-AIHP531/ DO - 10.1214/12-AIHP531 LA - en ID - AIHPB_2014__50_2_492_0 ER -
%0 Journal Article %A Lambert, Amaury %A Simatos, Florian %T The weak convergence of regenerative processes using some excursion path decompositions %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 492-511 %V 50 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/12-AIHP531/ %R 10.1214/12-AIHP531 %G en %F AIHPB_2014__50_2_492_0
Lambert, Amaury; Simatos, Florian. The weak convergence of regenerative processes using some excursion path decompositions. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 492-511. doi : 10.1214/12-AIHP531. https://www.numdam.org/articles/10.1214/12-AIHP531/
[1] Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 (1997) 812-854. | MR | Zbl
.[2] Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. | MR | Zbl
.[3] Excursions of Markov Processes. Probability and Its Applications. Birkhäuser Boston, Boston, MA, 1992. | MR | Zbl
.[4] A stochastic network with mobile users in heavy traffic. Queueing Systems Theory Appl. To appear. DOI:10.1007/s11134-012-9330-x. Available at arXiv:1202.2881. | MR | Zbl
and .[5] Diffusion approximation for a processor sharing queue in heavy traffic. Ann. Appl. Probab. 14 (2004) 555-611. | MR | Zbl
.[6] The fluid limit of a heavily loaded processor sharing queue. Ann. Appl. Probab. 12 (2002) 797-859. | MR | Zbl
, and .[7] Poisson point processes attached to Markov processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability Theory 225-239. Univ. California Press, Berkeley, CA, 1972. | MR | Zbl
.[8] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 2003. | MR | Zbl
and .[9] Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer-Verlag, New York, 2002. | MR | Zbl
.[10] On the scaling limit of simple random walk excursion measure in the plane. ALEA Lat. Am. J. Probab. Math. Stat. 2 (2006) 125-155. | MR | Zbl
.[11] Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case. Preprint, 2012, available at arXiv:1206.3800. | MR
and .[12] Scaling limits via excursion theory: Interplay between Crump-Mode-Jagers branching processes and Processor-Sharing queues. Ann. Appl. Probab. To appear. Available at arXiv:1102.5620. | MR | Zbl
, and .[13] Random walk loop soup. Trans. Amer. Math. Soc. 359 (2007) 767-787. | MR | Zbl
and .[14] From exploration paths to mass excursions - variations on a theme of Ray and Knight. In Surveys in Stochastic Processes 87-106. J. Blath, P. Imkeller and S. Roelly (Eds.). EMS Series of Congress Reports. Eur. Math. Soc., Zürich, 2011. | MR | Zbl
and .[15] Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14 (1963) 694-696. | MR | Zbl
.
[16] Heavy-traffic limits for the
- Lévy-Type Processes with Singularities, Locally Perturbed Random Walks (2025), p. 11 | DOI:10.1007/978-3-031-83919-1_2
- Functional Limit Theorems for Locally Perturbed Random Walks, Locally Perturbed Random Walks (2025), p. 73 | DOI:10.1007/978-3-031-83919-1_3
- Functional limit theorems for random walks perturbed by positive alpha-stable jumps, Bernoulli, Volume 29 (2023) no. 2, pp. 1638-1662 | DOI:10.3150/22-bej1515 | Zbl:1534.60041
- On a skew stable Lévy process, Stochastic Processes and their Applications, Volume 156 (2023), pp. 44-68 | DOI:10.1016/j.spa.2022.11.004 | Zbl:1504.60055
- Conjectures on symmetric queues in heavy traffic, Queueing Systems, Volume 100 (2022) no. 3-4, pp. 369-371 | DOI:10.1007/s11134-022-09746-x | Zbl:1491.90075
- Limit theorems for local times and applications to SDEs with jumps, Stochastic Processes and their Applications, Volume 153 (2022), pp. 39-56 | DOI:10.1016/j.spa.2022.06.022 | Zbl:1498.60134
- Serve the shortest queue and Walsh Brownian motion, The Annals of Applied Probability, Volume 29 (2019) no. 1, pp. 613-651 | DOI:10.1214/18-aap1432 | Zbl:1409.60037
- Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case, Journal of Theoretical Probability, Volume 28 (2015) no. 1, pp. 41-91 | DOI:10.1007/s10959-013-0492-1 | Zbl:1318.60079
- Functional limit theorems for processes pieced together from excursions, Journal of the Mathematical Society of Japan, Volume 67 (2015) no. 4, pp. 1859-1890 | DOI:10.2969/jmsj/06741859 | Zbl:1344.60035
- A stochastic network with mobile users in heavy traffic, Queueing Systems, Volume 74 (2013) no. 1, pp. 1-40 | DOI:10.1007/s11134-012-9330-x | Zbl:1279.60120
Cité par 10 documents. Sources : Crossref, zbMATH