Nous considérons une marche aléatoire unidimensionnelle dans un environnement i.i.d. Le comportement asymptotique d’une telle marche aléatoire dépend largement d’un paramètre crucial
We consider a one-dimensional, transient random walk in a random i.i.d. environment. The asymptotic behaviour of such random walk depends to a large extent on a crucial parameter
Mots-clés : weak quenched limits, point processes, Heavy tails
@article{AIHPB_2013__49_3_722_0, author = {Peterson, Jonathon and Samorodnitsky, Gennady}, title = {Weak quenched limiting distributions for transient one-dimensional random walk in a random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {722--752}, publisher = {Gauthier-Villars}, volume = {49}, number = {3}, year = {2013}, doi = {10.1214/11-AIHP474}, mrnumber = {3112432}, zbl = {1277.60188}, language = {en}, url = {https://www.numdam.org/articles/10.1214/11-AIHP474/} }
TY - JOUR AU - Peterson, Jonathon AU - Samorodnitsky, Gennady TI - Weak quenched limiting distributions for transient one-dimensional random walk in a random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 722 EP - 752 VL - 49 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP474/ DO - 10.1214/11-AIHP474 LA - en ID - AIHPB_2013__49_3_722_0 ER -
%0 Journal Article %A Peterson, Jonathon %A Samorodnitsky, Gennady %T Weak quenched limiting distributions for transient one-dimensional random walk in a random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 722-752 %V 49 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP474/ %R 10.1214/11-AIHP474 %G en %F AIHPB_2013__49_3_722_0
Peterson, Jonathon; Samorodnitsky, Gennady. Weak quenched limiting distributions for transient one-dimensional random walk in a random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 3, pp. 722-752. doi : 10.1214/11-AIHP474. https://www.numdam.org/articles/10.1214/11-AIHP474/
[1] Asymptotic behaviour for random walks in random environments. J. Appl. Probab. 36 (1999) 334-349. | MR | Zbl
.[2] Convergence of Probability Measures, 2nd edition. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, 1999. | MR | Zbl
.[3] On some limit theorems similar to the arc-sine law. Theory Probab. Appl. 10 (1965) 323-331. | MR | Zbl
.[4] Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 (1995) 879-917. | MR | Zbl
and .[5] Quenched limit theorems for nearest neighbour random walks in 1d random environment. Preprint, 2010. Available at arXiv:1012.2503v1. | MR | Zbl
and .[6] Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime. Bull. Soc. Math. France 137 (2009) 423-452. | Numdam | MR | Zbl
, and .
[7] Limit laws for transient random walks in random environment on
[8] Annealed and quenched fluctuations for ballistic random walks in random environment on
[9] Many visits to a single site by a transient random walk in random environment. Stochastic Process. Appl. 99 (2002) 159-176. | MR | Zbl
and .[10] Simple transient random walks in one-dimensional random environment: The central limit theorem. Probab. Theory Related Fields 139 (2007) 41-64. | MR | Zbl
.[11] A limit law for random walk in a random environment. Compos. Math. 30 (1975) 145-168. | Numdam | MR | Zbl
, and .[12] Limiting distributions and large deviations for random walks in random environments. Ph.D. thesis, Univ. Minnesota, 2008. Available at arXiv:0810.0257v1. | MR
.[13] Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 685-709. | Numdam | MR | Zbl
.[14] Quenched limits for transient, zero speed one-dimensional random walk in random environment. Ann. Probab. 37 (2009) 143-188. | MR | Zbl
and .[15] Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering. Springer, New York, 2008. | MR | Zbl
.[16] Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. | Zbl
and .[17] Infinitely divisible random probability distributions with an application to a random motion in a random environment. Electron. J. Probab. 11 (2006) 1144-1183 (electronic). | MR | Zbl
and .[18] Random walks in a random environment. Ann. Probability 3 (1975) 1-31. | MR | Zbl
.[19] Random walks in random environment. In Lectures on Probability Theory and Statistics 189-312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. | MR | Zbl
.Cité par Sources :