Nous considérons la solution d’une équation différentielle stochastique, dirigée par un mouvement brownien linéaire standard, dont le terme de dérive varie avec le temps
Let us consider a solution of a one-dimensional stochastic differential equation driven by a standard Brownian motion with time-inhomogeneous drift coefficient
Mots-clés : time-inhomogeneous diffusions, time dependent potential, singular stochastic differential equations, explosion times, scaling transformations, change of time, recurrence and transience, iterated logarithm type laws, asymptotic distributions
@article{AIHPB_2013__49_1_182_0, author = {Gradinaru, Mihai and Offret, Yoann}, title = {Existence and asymptotic behaviour of some time-inhomogeneous diffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {182--207}, publisher = {Gauthier-Villars}, volume = {49}, number = {1}, year = {2013}, doi = {10.1214/11-AIHP469}, mrnumber = {3060153}, zbl = {1267.60091}, language = {en}, url = {https://www.numdam.org/articles/10.1214/11-AIHP469/} }
TY - JOUR AU - Gradinaru, Mihai AU - Offret, Yoann TI - Existence and asymptotic behaviour of some time-inhomogeneous diffusions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 182 EP - 207 VL - 49 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP469/ DO - 10.1214/11-AIHP469 LA - en ID - AIHPB_2013__49_1_182_0 ER -
%0 Journal Article %A Gradinaru, Mihai %A Offret, Yoann %T Existence and asymptotic behaviour of some time-inhomogeneous diffusions %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 182-207 %V 49 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP469/ %R 10.1214/11-AIHP469 %G en %F AIHPB_2013__49_1_182_0
Gradinaru, Mihai; Offret, Yoann. Existence and asymptotic behaviour of some time-inhomogeneous diffusions. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 1, pp. 182-207. doi : 10.1214/11-AIHP469. https://www.numdam.org/articles/10.1214/11-AIHP469/
[1] Polynomial asymptotic stability of damped stochastic differential equations. Electron. J. Qual. Theory Differ. Equ. 2 (2004) 1-33. | MR | Zbl
and .[2] Solutions of stochastic differential equations obeying the law of the iterated logarithm, with applications to financial markets. Electron. J. Probab. 14 (2009) 912-959. | MR | Zbl
and .[3] Recurrence and ergodicity of diffusions. J. Multivariate Anal. 12 (1982) 95-122. | MR | Zbl
and .[4] Singular Stochastic Differential Equations. Lecture Notes in Mathematics 1858. Springer, Berlin, 2004. | MR | Zbl
and .[5] A sharper form of the Borel-Cantelli lemma and the strong law. Ann. Math. Statist. 36 (1965) 800-807. | MR | Zbl
and .[6] Bernard Friedman's urn. Ann. Math. Statist. 36 (1965) 956-970. | MR | Zbl
.[7] Abel transform and integrals of Bessel local times. Ann. Inst. Henri Poincaré Probab. Stat. 35 (1999) 531-572. | Numdam | MR | Zbl
, , and .[8] Stochastic Differential Equations. Springer, New York, 1991. | MR | Zbl
and .[9] Stochastic Stability of Differential Equations. Sitjthoff & Noordhoff, Alphen aan den Rijn, 1980. | Zbl
.[10] Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | MR | Zbl
and .[11] Foundation of Modern Probability, 3rd edition. Springer, New York, 2001. | MR | Zbl
.[12] On a one-parameter generalisation of the Brownian bridge and associated quadratic functionals. J. Theoret. Probab. 17 (2004) 1021-1029. | MR | Zbl
.
[13] Urn-related random walk with drift
[14] Proof of the law of iterated logarithm through diffusion equation. Ann. Inst. Statist. Math. 10 (1959) 21-28. | MR | Zbl
.[15] Remarks on non-explosion theorem for stochastic differential equations. Kodai Math. J. 5 (1982) 395-401. | MR | Zbl
.[16] Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. | MR | Zbl
and .[17] Multidimensional Diffusion Process. Springer, Berlin, 1979. | MR | Zbl
and .Cité par Sources :