Nous proposons une approche probabiliste au problème classique de l'existence, de l'unicité et du comportement asymptotique des solutions monotones de l'équation de propagation de front associée à l'équation parabolique du super-mouvement brownien de mécanisme de branchement général. Bien que largement inspiré par l'approche de Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 53-72) pour le mouvement brownien branchant, cet article ouvre plusieurs perspectives nouvelles. Notre analyse inclut le rôle de la normalisation de Seneta-Heyde qui, dans cette situation, s'inspire du travail classique de Grey (J. Appl. Probab. 11 (1974) 669-677). Nous donnons une explication trajectorielle de la décomposition en épine (la particule immortelle d’Evans), en utilisant la
We offer a probabilistic treatment of the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the reasoning in Kyprianou (Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 53-72) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta-Heyde norming which, in the current setting, draws on classical work of Grey (J. Appl. Probab. 11 (1974) 669-677). We give a pathwise explanation of Evans’ immortal particle picture (the spine decomposition) which uses the Dynkin-Kuznetsov
Mots-clés : superprocesses,
@article{AIHPB_2012__48_3_661_0, author = {Kyprianou, A. E. and Liu, R.-L. and Murillo-Salas, A. and Ren, Y.-X.}, title = {Supercritical super-brownian motion with a general branching mechanism and travelling waves}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {661--687}, publisher = {Gauthier-Villars}, volume = {48}, number = {3}, year = {2012}, doi = {10.1214/11-AIHP448}, mrnumber = {2976558}, zbl = {1267.60094}, language = {en}, url = {https://www.numdam.org/articles/10.1214/11-AIHP448/} }
TY - JOUR AU - Kyprianou, A. E. AU - Liu, R.-L. AU - Murillo-Salas, A. AU - Ren, Y.-X. TI - Supercritical super-brownian motion with a general branching mechanism and travelling waves JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 661 EP - 687 VL - 48 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/11-AIHP448/ DO - 10.1214/11-AIHP448 LA - en ID - AIHPB_2012__48_3_661_0 ER -
%0 Journal Article %A Kyprianou, A. E. %A Liu, R.-L. %A Murillo-Salas, A. %A Ren, Y.-X. %T Supercritical super-brownian motion with a general branching mechanism and travelling waves %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 661-687 %V 48 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/11-AIHP448/ %R 10.1214/11-AIHP448 %G en %F AIHPB_2012__48_3_661_0
Kyprianou, A. E.; Liu, R.-L.; Murillo-Salas, A.; Ren, Y.-X. Supercritical super-brownian motion with a general branching mechanism and travelling waves. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 661-687. doi : 10.1214/11-AIHP448. https://www.numdam.org/articles/10.1214/11-AIHP448/
[1] Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30 (1978) 33-76. | MR | Zbl
and .[2] Measure change in multitype branching. Adv. in Appl. Probab. 36 (2004) 544-581. | MR | Zbl
and .
[3] Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983) iv
[4] Multiplicative martingales and stopping lines for branching Brownian motion. Ann. Probab. 30 (1991) 1195-1205. | MR | Zbl
.[5] Probability Theory and Examples, 2nd edition. Duxbury Press, 1996. | MR | Zbl
.[6] Particle systems and reaction-diffusion equations. Ann. Probab. 22 (1994) 289-333. | MR | Zbl
and .[7] A probabilistic approach to one class of non-linear differential equations. Probab. Theory Related Fields 89 (1991) 89-115. | MR | Zbl
.[8] Branching particle systems and superprocesses. Ann. Probab. 19 (1991) 1157-1194. | MR | Zbl
.[9] Superprocesses and partial differential equations. Ann. Probab. 21 (1993) 1185-1262. | MR | Zbl
.[10] Branching exit Markov systems and superprocesses. Ann. Probab. 29 (2001) 1833-1858. | MR | Zbl
.[11] Diffusions, Superdiffusions and Partial Differential Equations. Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl
.
[12]
[13] Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2004) 78-99. | MR | Zbl
and .[14] Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 959-971. | MR | Zbl
.[15] The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65 (1977) 335-361. | MR | Zbl
and .[16] The wave of advance of advantageous genes. Ann. Eugenics 7 (1937) 355-369. | JFM
.[17] Construction and regularity of measure-valued Markov branching processes. Israel J. Math. 64 (1988) 337-361. | MR | Zbl
.[18] Exponential growth rates in a typed branching diffusion. Ann. Appl. Probab. 17 (2007) 609-653. | MR | Zbl
, and .[19] Asymptotic behavior of continuous time, continuous state-space branching processes. J. Appl. Probab. 11 (1974) 669-677. | MR | Zbl
.
[20] A spine approach to branching diffusions with applications to
[21] Travelling waves for the F-K-P-P equation via probabilistic arguments. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 503-517. | MR | Zbl
.[22] Measure changes with extinction. Stat. Probab. Lett. 79 (2009) 1129-1133. | MR | Zbl
and .[23] On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type. Osaka J. Math. 13 (1976) 11-66. | MR | Zbl
.[24] Étude de l'équation de la diffusion avec croissance de la quantité de la matière at son application a un problèm biologique. Moscow Univ. Math. Bull. 1 (1937) 1-25. | Zbl
, and .[25] Travelling wave solution to the K-P-P equation: Alternatives to Simon Harris' probabilistic analysis Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 53-72. | Numdam | MR | Zbl
.
[26] Asymptotic radial speed of the support of supercritical branching Brownian motion and super-Brownian motion in
[27] Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006.
.
[28] Super-Brownian motion:
[29] On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J. Differential Equations 59 (1985) 44-70. | Zbl
.[30] Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1999. | Zbl
.
[31]
[32] A simple path to Biggins' martingale convergence theorem. In Classical and Modern Branching Processes 217-222. K. B. Athreya and P. Jagers (Eds). Springer, New York, 1997. | Zbl
.
[33] Conceptual proofs of
[34] The number of absorbed individuals in branching Brownian motion with a barrier. Available at arXiv:1004.1426. | Numdam | Zbl
.[35] Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math. 28 (1975) 323-331. | Zbl
.[36] Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes 1987 223-242. E. Çinlar, K. L. Chung and R. K. Getoor (Eds). Progress in Probability and Statistics 15. Birkhäuser, Boston, 1988. | Zbl
.
[37] K-P-P-type asymptotics for nonlinear diffusion in a large ball with infinite boundary data and on
[38] On states of total weighted occupation times of a class of infinitely divisible superprocesses on a bounded domain. Potential Anal. 28 (2008) 105-137. | MR | Zbl
and .[39] Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1980. | Zbl
and .
[40] Lifetime and compactness of range for
[41] The behavior of solutions of some non-linear diffusion equations for large time. J. Math. Kyoto Univ. 18 (1978) 453-508. | MR | Zbl
.[42] Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs 140. Amer. Math. Soc., 1994. | MR | Zbl
, and .[43] A limit theorem of branching processes and continuous-state branching processes. J. Math. Kyoto Univ. 8 (1968) 141-167. | MR | Zbl
.Cité par Sources :