Exponential concentration for first passage percolation through modified Poincaré inequalities
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 544-573.

On obtient une nouvelle inégalité de concentration exponentielle pour la percolation de premier passage, valable pour une large classe de distributions des temps d'arêtes. Ceci améliore et étend un résultat de Benjamini, Kalai et Schramm (Ann. Probab. 31 (2003)) qui donnait une borne sur la variance pour des temps d'arêtes suivant une loi de Bernoulli. Notre approche se fonde sur des inégalités fonctionnelles étendant les travaux de Rossignol (Ann. Probab. 35 (2006)), Falik et Samorodnitsky (Combin. Probab. Comput. 16 (2007)).

We provide a new exponential concentration inequality for first passage percolation valid for a wide class of edge times distributions. This improves and extends a result by Benjamini, Kalai and Schramm (Ann. Probab. 31 (2003)) which gave a variance bound for Bernoulli edge times. Our approach is based on some functional inequalities extending the work of Rossignol (Ann. Probab. 35 (2006)), Falik and Samorodnitsky (Combin. Probab. Comput. 16 (2007)).

DOI : 10.1214/07-AIHP124
Classification : 60E15, 60K35
Mots-clés : modified Poincaré inequality, concentration inequality, hypercontractivity, first passage percolation
@article{AIHPB_2008__44_3_544_0,
     author = {Bena{\"\i}m, Michel and Rossignol, Rapha\"el},
     title = {Exponential concentration for first passage percolation through modified {Poincar\'e} inequalities},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {544--573},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {3},
     year = {2008},
     doi = {10.1214/07-AIHP124},
     mrnumber = {2451057},
     zbl = {1186.60102},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/07-AIHP124/}
}
TY  - JOUR
AU  - Benaïm, Michel
AU  - Rossignol, Raphaël
TI  - Exponential concentration for first passage percolation through modified Poincaré inequalities
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2008
SP  - 544
EP  - 573
VL  - 44
IS  - 3
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/07-AIHP124/
DO  - 10.1214/07-AIHP124
LA  - en
ID  - AIHPB_2008__44_3_544_0
ER  - 
%0 Journal Article
%A Benaïm, Michel
%A Rossignol, Raphaël
%T Exponential concentration for first passage percolation through modified Poincaré inequalities
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2008
%P 544-573
%V 44
%N 3
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/07-AIHP124/
%R 10.1214/07-AIHP124
%G en
%F AIHPB_2008__44_3_544_0
Benaïm, Michel; Rossignol, Raphaël. Exponential concentration for first passage percolation through modified Poincaré inequalities. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 544-573. doi : 10.1214/07-AIHP124. https://www.numdam.org/articles/10.1214/07-AIHP124/

[1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques. Société Mathématique de France, Paris, 2000. | MR | Zbl

[2] J. Baik, P. Deift and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (1999) 1119-1178. | MR | Zbl

[3] D. Bakry. Functional inequalities for Markov semigroups. In Probability Measures on Groups: Recent Directions and Trends. Tota Inst. Fund Res., Mumbai, 91-147. | MR | Zbl

[4] M. Benaim and R. Rossignol. A modified Poincaré inequality and its application to first passage percolation, 2006. Available at http://arxiv.org/abs/math.PR/0602496.

[5] I. Benjamini, G. Kalai and O. Schramm. First passage percolation has sublinear distance variance. Ann. Probab. 31 (2003) 1970-1978. | MR | Zbl

[6] S. Boucheron, O. Bousquet, G. Lugosi and P. Massart. Moment inequalities for functions of independent random variables. Ann. Probab. 33 (2005) 514-560. | MR | Zbl

[7] S. Boucheron, G. Lugosi and P. Massart. Concentration inequalities using the entropy method. Ann. Probab. 31 (2003) 1583-1614. | MR | Zbl

[8] M. Émery and J. Yukich. A simple proof of the logarithmic Sobolev inequality on the circle. Séminaire de probabilités de Strasbourg 21 (1987) 173-175. | EuDML | Numdam | MR | Zbl

[9] D. Falik and A. Samorodnitsky. Edge-isoperimetric inequalities and influences. Combin. Probab. Comput. 16 (2007) 693-712. | MR | Zbl

[10] J. M. Hammersley and D. J. A. Welsh. First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. 61-110. Springer, New York, 1965. | MR | Zbl

[11] G. H. Hardy, J. E. Littlewood and G. Pólya. Inequalities. Cambridge University Press, 1934. | JFM | Zbl

[12] C. D. Howard. Models of first-passage percolation. In Encyclopaedia Math. Sci. 125-173. Springer, Berlin, 2004. | MR

[13] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | MR | Zbl

[14] K. Johansson. Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Related Fields 116 (2000) 445-456. | MR | Zbl

[15] H. Kesten. Aspects of first passage percolation. In Ecole d'été de probabilité de Saint-Flour XIV-1984 125-264. Lecture Notes in Math. 1180. Springer, Berlin, 1986. | MR | Zbl

[16] H. Kesten. On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993) 296-338. | MR | Zbl

[17] M. Ledoux. On Talagrand's deviation inequalities for product measures. ESAIM P&S 1 (1996) 63-87. | Numdam | MR | Zbl

[18] M. Ledoux. The Concentration of Measure Phenomenon. Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl

[19] M. Ledoux. Deviation inequalities on largest eigenvalues. In Summer School on the Connections between Probability and Geometric Functional Analysis, 14-19 June 2005. To appear, 2005. Available at http://www.lsp.ups-tlse.fr/Ledoux/Jerusalem.pdf. | MR | Zbl

[20] L. Miclo. Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. In Séminaire de Probabilités de Strasbourg, 36 (2002) 222-229. | Numdam | MR | Zbl

[21] R. Rossignol. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality. Ann. Probab. 35 (2006) 1707-1725. | MR | Zbl

[22] L. Saloff-Coste. Lectures on finite Markov chains. In Ecole d'été de probabilité de Saint-Flour XXVI 301-413. P. Bernard (Ed.). Springer, New York, 1997. | MR | Zbl

[23] M. Talagrand. On Russo's approximate zero-one law. Ann. Probab. 22 (1994) 1576-1587. | MR | Zbl

[24] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 (1995) 73-205. | Numdam | MR | Zbl

[25] M. Talagrand. New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505-563. | MR | Zbl

[26] M. Talagrand. A new look at independence. Ann. Probab. 24 (1996) 1-34. | MR | Zbl

[27] K. Yosida. Functional Analysis, 6th edition. Springer-Verlag, Berlin, 1980. | MR

  • Dembin, Barbara; Elboim, Dor; Peled, Ron On the influence of edges in first-passage percolation on Zd, The Annals of Probability, Volume 53 (2025) no. 2 | DOI:10.1214/24-aop1715
  • Dembin, Barbara The variance of the graph distance in the infinite cluster of percolation is sublinear, Latin American Journal of Probability and Mathematical Statistics, Volume 21 (2024) no. 1, p. 307 | DOI:10.30757/alea.v21-13
  • Dembin, Barbara; Garban, Christophe Superconcentration for minimal surfaces in first passage percolation and disordered Ising ferromagnets, Probability Theory and Related Fields, Volume 190 (2024) no. 3-4, p. 675 | DOI:10.1007/s00440-023-01252-2
  • Chen, Wei‐Kuo; Lam, Wai‐Kit Universality of superconcentration in the Sherrington–Kirkpatrick model, Random Structures Algorithms, Volume 64 (2024) no. 2, p. 267 | DOI:10.1002/rsa.21183
  • Cordero-Erausquin, Dario; Eskenazis, Alexandros Talagrand’s influence inequality revisited, Analysis PDE, Volume 16 (2023) no. 2, p. 571 | DOI:10.2140/apde.2023.16.571
  • Alexander, Kenneth S. Geodesics, bigeodesics, and coalescence in first passage percolation in general dimension, Electronic Journal of Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ejp1011
  • Can, Van Hao; Nguyen, Van Quyet; Vu, Hong Son On the Universality of the Superconcentration in Mixed p-Spin Models, Journal of Statistical Physics, Volume 190 (2023) no. 4 | DOI:10.1007/s10955-023-03093-8
  • Ganguly, Shirshendu; Hegde, Milind Optimal tail exponents in general last passage percolation via bootstrapping geodesic geometry, Probability Theory and Related Fields, Volume 186 (2023) no. 1-2, p. 221 | DOI:10.1007/s00440-023-01204-w
  • Basu, Riddhipratim; Mj, Mahan First passage percolation on hyperbolic groups, Advances in Mathematics, Volume 408 (2022), p. 108599 | DOI:10.1016/j.aim.2022.108599
  • Gangopadhyay, Ujan Fluctuations of transverse increments in two-dimensional first passage percolation, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp772
  • Damron, Michael; Hanson, Jack; Houdré, Christian; Xu, Chen Lower bounds for fluctuations in first-passage percolation for general distributions, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 56 (2020) no. 2 | DOI:10.1214/19-aihp1004
  • Bates, Erik; Chatterjee, Sourav Fluctuation lower bounds in planar random growth models, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 56 (2020) no. 4 | DOI:10.1214/19-aihp1043
  • Bernstein, Megan; Damron, Michael; Greenwood, Torin Sublinear variance in Euclidean first-passage percolation, Stochastic Processes and their Applications, Volume 130 (2020) no. 8, p. 5060 | DOI:10.1016/j.spa.2020.02.011
  • Bakhtin, Yuri; Li, Liying Thermodynamic Limit for Directed Polymers and Stationary Solutions of the Burgers Equation, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 3, p. 536 | DOI:10.1002/cpa.21779
  • Nakajima, Shuta Divergence of non-random fluctuation in First Passage Percolation, Electronic Communications in Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ecp267
  • Chatterjee, Sourav A general method for lower bounds on fluctuations of random variables, The Annals of Probability, Volume 47 (2019) no. 4 | DOI:10.1214/18-aop1304
  • Matic, Ivan A Parallel Algorithm for the Constrained Shortest Path Problem on Lattice Graphs, Shortest Path Solvers. From Software to Wetware, Volume 32 (2018), p. 1 | DOI:10.1007/978-3-319-77510-4_1
  • Comets, Francis The Martingale Approach and the L 2 Region, Directed Polymers in Random Environments, Volume 2175 (2017), p. 31 | DOI:10.1007/978-3-319-50487-2_3
  • Damron, Michael; Wang, Xuan Entropy reduction in Euclidean first-passage percolation, Electronic Journal of Probability, Volume 21 (2016) no. none | DOI:10.1214/16-ejp12
  • Damron, Michael; Kubota, Naoki Rate of convergence in first-passage percolation under low moments, Stochastic Processes and their Applications, Volume 126 (2016) no. 10, p. 3065 | DOI:10.1016/j.spa.2016.04.001
  • Rossignol, Raphaël Noise-stability and central limit theorems for effective resistance of random electric networks, The Annals of Probability, Volume 44 (2016) no. 2 | DOI:10.1214/14-aop996
  • Alm, Sven Erick; Deijfen, Maria First Passage Percolation on Z2 Z 2 : A Simulation Study, Journal of Statistical Physics, Volume 161 (2015) no. 3, p. 657 | DOI:10.1007/s10955-015-1356-0
  • Damron, Michael; Hanson, Jack; Sosoe, Philippe Sublinear variance in first-passage percolation for general distributions, Probability Theory and Related Fields, Volume 163 (2015) no. 1-2, p. 223 | DOI:10.1007/s00440-014-0591-7
  • Tanguy, Kevin Some superconcentration inequalities for extrema of stationary Gaussian processes, Statistics Probability Letters, Volume 106 (2015), p. 239 | DOI:10.1016/j.spl.2015.07.028
  • Damron, Michael; Hanson, Jack; Sosoe, Philippe Subdiffusive concentration in first passage percolation, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-3680
  • Sodin, Sasha Positive Temperature Versions of Two Theorems on First-Passage Percolation, Geometric Aspects of Functional Analysis, Volume 2116 (2014), p. 441 | DOI:10.1007/978-3-319-09477-9_30
  • Degond, Pierre; Liu, Jian-Guo; Ringhofer, Christian Evolution of the Distribution of Wealth in an Economic Environment Driven by Local Nash Equilibria, Journal of Statistical Physics, Volume 154 (2014) no. 3, p. 751 | DOI:10.1007/s10955-013-0888-4
  • Chatterjee, Sourav Introduction, Superconcentration and Related Topics (2014), p. 1 | DOI:10.1007/978-3-319-03886-5_1
  • Chatterjee, Sourav Talagrand’s Method for Proving Superconcentration, Superconcentration and Related Topics (2014), p. 45 | DOI:10.1007/978-3-319-03886-5_5
  • Auffinger, Antonio; Damron, Michael A simplified proof of the relation between scaling exponents in first-passage percolation, The Annals of Probability, Volume 42 (2014) no. 3 | DOI:10.1214/13-aop854
  • Chatterjee, Sourav The universal relation between scaling exponents in first-passage percolation, Annals of Mathematics, Volume 177 (2013) no. 2, p. 663 | DOI:10.4007/annals.2013.177.2.7
  • Aldous, David Interacting particle systems as stochastic social dynamics, Bernoulli, Volume 19 (2013) no. 4 | DOI:10.3150/12-bejsp04
  • Alexander, Kenneth; Zygouras, Nikolaos Subgaussian concentration and rates of convergence in directed polymers, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2005
  • Matic, Ivan; Nolen, James A Sublinear Variance Bound for Solutions of a Random Hamilton–Jacobi Equation, Journal of Statistical Physics, Volume 149 (2012) no. 2, p. 342 | DOI:10.1007/s10955-012-0590-y
  • Graham, B. T. Sublinear Variance for Directed Last-Passage Percolation, Journal of Theoretical Probability, Volume 25 (2012) no. 3, p. 687 | DOI:10.1007/s10959-010-0315-6
  • van den Berg, Jacob; Kiss, Demeter Sublinearity of the travel-time variance for dependent first-passage percolation, The Annals of Probability, Volume 40 (2012) no. 2 | DOI:10.1214/10-aop631
  • Garban*, Christophe Oded Schramm’s contributions to Noise Sensitivity, Selected Works of Oded Schramm (2011), p. 287 | DOI:10.1007/978-1-4419-9675-6_11
  • Garban, Christophe Oded Schramm’s contributions to noise sensitivity, The Annals of Probability, Volume 39 (2011) no. 5 | DOI:10.1214/10-aop582
  • Zhang, Yu On the concentration and the convergence rate with a moment condition in first passage percolation, Stochastic Processes and their Applications, Volume 120 (2010) no. 7, p. 1317 | DOI:10.1016/j.spa.2010.03.001

Cité par 39 documents. Sources : Crossref