L’objet de ce travail est l’étude du comportement asymptotique en temps petit des Beta-coalescents. Ces processus décrivent la limite d’échelle de la généalogie d’un certain nombre de modèles en génétique des populations. Nous donnons en particulier un théorème de convergence presque sûre pour le nombre de blocs renormalisé. Nous décrivons également le comportement asymptotique des tailles des blocs. Ces résultats permettent de calculer la dimension de Hausdorff et la dimension de packing d’un espace métrique associé à ce type de coalescents, ainsi que la longueur totale des branches de l’arbre de coalescence. Ce dernier résultat correspond à une question qui se pose en génétique des populations. Enfin, ces résultats sont en partie étendus par des arguments de couplage aux cas de
For a finite measure
Mots-clés : coalescence, continuous-state branching process, coalescent with multiple mergers
@article{AIHPB_2008__44_2_214_0, author = {Berestycki, Julien and Berestycki, Nathana\"el and Schweinsberg, Jason}, title = {Small-time behavior of beta coalescents}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {214--238}, publisher = {Gauthier-Villars}, volume = {44}, number = {2}, year = {2008}, doi = {10.1214/07-AIHP103}, mrnumber = {2446321}, zbl = {1214.60034}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP103/} }
TY - JOUR AU - Berestycki, Julien AU - Berestycki, Nathanaël AU - Schweinsberg, Jason TI - Small-time behavior of beta coalescents JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 214 EP - 238 VL - 44 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP103/ DO - 10.1214/07-AIHP103 LA - en ID - AIHPB_2008__44_2_214_0 ER -
%0 Journal Article %A Berestycki, Julien %A Berestycki, Nathanaël %A Schweinsberg, Jason %T Small-time behavior of beta coalescents %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 214-238 %V 44 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP103/ %R 10.1214/07-AIHP103 %G en %F AIHPB_2008__44_2_214_0
Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Small-time behavior of beta coalescents. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 214-238. doi : 10.1214/07-AIHP103. https://www.numdam.org/articles/10.1214/07-AIHP103/
[1] Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5 (1999) 3-48. | MR | Zbl
.[2] Ruelle's probability cascades seen as a fragmentation process. Markov Process. Related Fields 12 (2006) 447-474. | MR | Zbl
.[3] Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007) 1835-1887. | MR | Zbl
, and .[4] Lévy Processes. Cambridge University Press, Cambridge, 1996. | MR | Zbl
.[5] Random Coagulation and Fragmentation Processes. Cambridge University Press, Cambridge, 2006. | MR | Zbl
.[6] The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000) 249-266. | MR | Zbl
and .[7] Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003) 261-288. | MR | Zbl
and .[8] Stochastic flows associated to coalescent processes III: limit theorems. Illinois J. Math. 50 (2006) 147-181. | MR | Zbl
and .[9] Two coalescents derived from the ranges of stable subordinators. Electron. J. Probab. 5 (2000) 1-17. | MR | Zbl
and .[10] Regular Variation. Cambridge University Press, Cambridge, 1987. | MR | Zbl
, and .[11] Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005) 303-325. | MR | Zbl
, , , , , and .[12] On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998) 247-276. | MR | Zbl
and .[13] Continuum-sites stepping-stone models, coalescing exchangeable partitions, and random trees. Ann. Probab. 28 (2000) 1063-1110. | MR | Zbl
, , , and .[14] Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166-205. | MR | Zbl
and .[15] Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989. | MR | Zbl
.[16] A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003) 996-1027. | MR | Zbl
.[17] Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 (2005) 553-603. | MR | Zbl
and .[18] A coalescent model for the effect of advantageous mutations on the genealogy of a population. Stochastic Process. Appl. 115 (2005) 1628-1657. | MR | Zbl
and .[19] Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. Stochastic Process. Appl. 38 (1991) 239-266. | MR | Zbl
and .[20] Kingman's coalescent as a random metric space. In Stochastic Models: A Conference in Honour of Professor Donald A. Dawson (L. G. Gorostiza and B. G. Ivanoff, Eds). Canadian Mathematical Society/American Mathematical Society, 2000. | MR | Zbl
.[21] Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Hoboken, NJ, 2003. | MR | Zbl
.[22] Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab. 10 (2005) 718-745. | MR | Zbl
and .[23] The Galton-Watson process with mean one and finite variance. Theory Probab. Appl. 11 (1966) 513-540. | MR | Zbl
, and .[24] The representation of partition structures. J. London Math. Soc. 18 (1978) 374-380. | MR | Zbl
.[25] The coalescent. Stochastic Process. Appl. 13 (1982) 235-248. | MR | Zbl
.[26] The limit of a sequence of branching processes. Z. Wahrsch. Verw. Gebiete 7 (1967) 271-288. | MR | Zbl
.[27] Continuous state branching processes. Bull. Amer. Math. Soc. 73 (1967) 382-386. | MR | Zbl
.[28] On the number of segregating sites for populations with large family sizes. Adv. in Appl. Probab. 38 (2006) 750-767. | MR | Zbl
.[29] A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 (2001) 1547-1562. | MR | Zbl
and .[30] Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR | Zbl
.[31] The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999) 1116-1125. | MR | Zbl
.[32] A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000) 1-11. | MR | Zbl
.[33] Coalescent processes obtained from supercritical Galton-Watson processes. Stochastic Process. Appl. 106 (2003) 107-139. | MR | Zbl
.[34] A new approach to local times. J. Math. Mech. 17 (1968) 1023-1054. | MR | Zbl
.[35] A branching process with mean one and possibly infinite variance. Z. Wahrsch. Verw. Gebiete 9 (1968) 139-145. | MR | Zbl
.[36] Certain limit theorems of the theory of branching processes. Dokl. Acad. Nauk SSSR 56 (1947) 795-798. | MR | Zbl
.Cité par Sources :