@article{AIHPB_2007__43_5_619_0, author = {Wang, Wensheng}, title = {Almost-sure path properties of fractional brownian sheet}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {619--631}, publisher = {Elsevier}, volume = {43}, number = {5}, year = {2007}, doi = {10.1016/j.anihpb.2006.09.005}, mrnumber = {2347099}, zbl = {1122.60040}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpb.2006.09.005/} }
TY - JOUR AU - Wang, Wensheng TI - Almost-sure path properties of fractional brownian sheet JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 619 EP - 631 VL - 43 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2006.09.005/ DO - 10.1016/j.anihpb.2006.09.005 LA - en ID - AIHPB_2007__43_5_619_0 ER -
%0 Journal Article %A Wang, Wensheng %T Almost-sure path properties of fractional brownian sheet %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 619-631 %V 43 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2006.09.005/ %R 10.1016/j.anihpb.2006.09.005 %G en %F AIHPB_2007__43_5_619_0
Wang, Wensheng. Almost-sure path properties of fractional brownian sheet. Annales de l'I.H.P. Probabilités et statistiques, Tome 43 (2007) no. 5, pp. 619-631. doi : 10.1016/j.anihpb.2006.09.005. https://www.numdam.org/articles/10.1016/j.anihpb.2006.09.005/
[1] Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theor. Probab. 15 (2002) 589-612. | MR | Zbl
, ,
[2] Fernique type inequalities and moduli of continuity for
[3] Strong Approximations in Probability and Statistics, Academic Press, New York, 1981. | MR | Zbl
, ,[4] Estimates for the small probabilities of the fractional Brownian sheet, J. Theor. Probab. 13 (2000) 357-382. | MR | Zbl
,[5] Sample function properties of multi-parameter stable processes, Z. Wahrsch. Verw. Gebiete 96 (1981) 195-228. | MR | Zbl
,[6] On large increments of a two-parameter fractional Wiener process, Sci. China 51 (2001) 215-223. | Zbl
, , ,[7] Small deviations for some multi-parameter Gaussian processes, J. Theor. Probab. 14 (2001) 213-239. | MR | Zbl
, ,[8] Small values of Gaussian processes and functional laws of the iterated logarithm, Probab. Theory Rel. Fields 101 (1995) 173-192. | MR | Zbl
, ,[9] Sample functions of the N-parameter Wiener process, Ann. Probab. 1 (1973) 138-163. | MR | Zbl
, ,[10] On the size of the increments of non-stationary Gaussian processes, Stoch. Process. Appl. 18 (1984) 47-56. | MR | Zbl
,[11] A multi-parameter Gaussian process, Ann. Math. Statist. 41 (1970) 1582-1595. | MR | Zbl
,[12] Partial sums of matrix arrays and Brownian sheet, in: , (Eds.), Stochastic Analysis, Wiley, New York, 1972, pp. 331-348. | MR
,[13] Multiple points of trajectories of multiparameter fractional Brownian motion, Probab. Theory Rel. Fields 112 (1998) 545-563. | MR | Zbl
,- Asymptotic covariances for functionals of weakly stationary random fields, Stochastic Processes and their Applications, Volume 170 (2024), p. 104297 | DOI:10.1016/j.spa.2024.104297
- Multi-scale invariant fields: estimation and prediction, Journal of Statistical Mechanics: Theory and Experiment, Volume 2020 (2020) no. 7, p. 073408 | DOI:10.1088/1742-5468/ab99c3
- Sample Paths Properties of the Set-Indexed Fractional Brownian Motion, New Trends in Applied Harmonic Analysis, Volume 2 (2019), p. 293 | DOI:10.1007/978-3-030-32353-0_10
- Some Singular Sample Path Properties of a Multiparameter Fractional Brownian Motion, Journal of Theoretical Probability, Volume 30 (2017) no. 4, p. 1285 | DOI:10.1007/s10959-016-0694-4
- Exact moduli of continuity for operator-scaling Gaussian random fields, Bernoulli, Volume 21 (2015) no. 2 | DOI:10.3150/13-bej593
- Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields, Transactions of the American Mathematical Society, Volume 365 (2012) no. 2, p. 1081 | DOI:10.1090/s0002-9947-2012-05678-9
- Sample Path Properties of Anisotropic Gaussian Random Fields, A Minicourse on Stochastic Partial Differential Equations, Volume 1962 (2009), p. 145 | DOI:10.1007/978-3-540-85994-9_5
Cité par 7 documents. Sources : Crossref