@article{AIHPB_2006__42_1_1_0,
author = {Testud, Beno{\^\i}t},
title = {Mesures {quasi-Bernoulli} au sens faible : r\'esultats et exemples},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {1--35},
year = {2006},
publisher = {Elsevier},
volume = {42},
number = {1},
doi = {10.1016/j.anihpb.2005.01.002},
mrnumber = {2196969},
zbl = {05021190},
language = {fr},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/}
}
TY - JOUR AU - Testud, Benoît TI - Mesures quasi-Bernoulli au sens faible : résultats et exemples JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 1 EP - 35 VL - 42 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/ DO - 10.1016/j.anihpb.2005.01.002 LA - fr ID - AIHPB_2006__42_1_1_0 ER -
%0 Journal Article %A Testud, Benoît %T Mesures quasi-Bernoulli au sens faible : résultats et exemples %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 1-35 %V 42 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2005.01.002/ %R 10.1016/j.anihpb.2005.01.002 %G fr %F AIHPB_2006__42_1_1_0
Testud, Benoît. Mesures quasi-Bernoulli au sens faible : résultats et exemples. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 1, pp. 1-35. doi: 10.1016/j.anihpb.2005.01.002
[1] , Ergodic Theory and Information, Wiley, New York, 1965. | Zbl | MR
[2] , Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 807-810. | Zbl | MR
[3] , , Spectre multifractal de mesures boréliennes sur , C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 253-256. | Zbl | MR
[4] , , , The validity of the multifractal formalism : results and examples, Adv. in Math. 165 (2002) 264-284. | Zbl | MR
[5] , , , On the multifractal analysis of measures, J. Statist. Phys. 66 (1992) 775-790. | Zbl | MR
[6] , Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990. | Zbl | MR
[7] , Techniques in Fractal Geometry, Wiley, New York, 1997. | Zbl | MR
[8] , Sur la dimension inférieure des mesures, Studia Math. 111 (1994) 1-17. | MR
[9] , The smoothness of -spectrum of self-similar measures with overlaps, J. London Math. Soc. 68 (2003) 102-118. | Zbl | MR
[10] , , The pressure function for products of non-negative matrices, Math. Res. Lett. 9 (2002) 363-378. | Zbl | MR
[11] D.J. Feng, K.S. Lau, Differentiability of pressure functions for products of non-negative matrices, preprint. | MR
[12] , Sur la comparaison des mesures avec les mesures de Hausdorff, C. R Acad. Sci. Paris Sér. I Math. 321 (1995) 61-65. | Zbl | MR
[13] , Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 309-338. | Zbl | MR | Numdam
[14] , Weierstrass function with random phases, Trans. Amer. Math. Soc. 335 (2003) 3065-3077. | Zbl | MR
[15] , Fractals and self similarity, Indiana Univ. Math. J. 30 (1981) 713-747. | Zbl | MR
[16] , , Hausdorff dimension of Sofic affine-invariant sets, Israel J. Math. 94 (1996) 127-138. | Zbl | MR
[17] , , -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998) 225-251. | Zbl | MR
[18] , , Multifractal measures and a weak separation condition, Adv. in Math. 141 (1999) 45-96. | Zbl | MR
[19] , Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor. 58 (1983) 267-285. | Zbl | MR | Numdam
[20] , The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984) 1-9. | Zbl | MR
[21] , A dimension result arising from the -spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997) 2943-2951. | Zbl | MR
[22] , , Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc. 63 (2001) 655-672. | Zbl | MR
[23] E. Olivier, Communication privée.
[24] , A multifractal formalism, Adv. in Math. 116 (1995) 82-196. | Zbl | MR
[25] , Multifractal measures, in: Proc. NATO Adv. Study Inst. Il Ciocco, vol. 372, 1997, pp. 175-186. | MR
[26] , , On Hausdorff dimension of some fractal sets, Studia Math. 93 (1989) 155-186. | Zbl | MR
[27] , Dimensions in a separable metric space, Kyushu J. Math. 49 (1995) 143-162. | Zbl | MR
[28] B. Testud, Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand, 2004.
[29] , Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982) 57-74. | Zbl | MR
[30] , The Hausdorff dimension of the graphs of continuous self-affine functions, Proc. Amer. Math. Soc. 108 (1990) 921-930. | Zbl | MR
Cité par Sources :





