@article{AIHPB_2004__40_6_677_0, author = {Raugi, Albert}, title = {A general {Choquet-Deny} theorem for nilpotent groups}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {677--683}, publisher = {Elsevier}, volume = {40}, number = {6}, year = {2004}, doi = {10.1016/j.anihpb.2003.06.004}, zbl = {1063.60006}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/} }
TY - JOUR AU - Raugi, Albert TI - A general Choquet-Deny theorem for nilpotent groups JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 677 EP - 683 VL - 40 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/ DO - 10.1016/j.anihpb.2003.06.004 LA - en ID - AIHPB_2004__40_6_677_0 ER -
%0 Journal Article %A Raugi, Albert %T A general Choquet-Deny theorem for nilpotent groups %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 677-683 %V 40 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/ %R 10.1016/j.anihpb.2003.06.004 %G en %F AIHPB_2004__40_6_677_0
Raugi, Albert. A general Choquet-Deny theorem for nilpotent groups. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 6, pp. 677-683. doi : 10.1016/j.anihpb.2003.06.004. https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/
[1] Espaces de Poisson des groupes localement compacts, in: Lecture Notes in Math, vol. 148, Springer, Berlin, 1970. | MR | Zbl
,[2] Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, CRAS Sér. A 279 (1974) 25-28. | Zbl
,[3] On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Stat 26 (1955) 654-658. | MR | Zbl
,[4] Sur l'équation de convolution μ=μ∗σ, CRAS Sér. A 250 (1960) 799-801. | Zbl
, ,[5] Entropie, théorèmes limite et marches aléatoires, in: Lecture Notes in Math, vol. 1210, Springer, Berlin, 1986, pp. 241-284. | MR | Zbl
,[6] Random walks on groups with a finite number of generators, Soviet Math. Dokl 2 (1961) 399-402. | Zbl
, ,[7] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin. | Zbl
[8] A Poisson formula for semi-simple Lie groups, Ann. Math., Ser. 2 77 (1963) 335-386. | MR | Zbl
,[9] Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333-379. | Numdam | MR | Zbl
,[10] Random walks on almost connected locally compact groups: boundary and convergence, J. Anal. Math 74 (1998) 235-273. | MR | Zbl
,[11] Random walks on discrete groups. Boundary and entropy, Ann. Probab 11 (1983) 457-490. | MR | Zbl
, ,[12] Poisson Boundaries of Random Walks on Discrete Solvable Groups, Plenum, New York, 1991, pp. 205-238. | Zbl
,[13] Poisson boundaries of discrete groups of matrices, CRAS Sér. I 2978 (16) (1984) 393-396. | MR | Zbl
,[14] Bases mathématiques du calcul des probabilités, Masson, 1970. | MR | Zbl
,[15] Périodes des fonctions harmoniques bornées, 1978. | MR
,[16] Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math. France 54 (1977) 5-118. | Numdam | MR | Zbl
,[17] Markov Chains, North-Holland, Amsterdam, 1975. | MR | Zbl
,- Random dynamics on real and complex projective surfaces, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2023) no. 0 | DOI:10.1515/crelle-2023-0038
- Furstenberg entropy of intersectional invariant random subgroups, Compositio Mathematica, Volume 154 (2018) no. 10, p. 2239 | DOI:10.1112/s0010437x18007261
- Approximate lattices, Duke Mathematical Journal, Volume 167 (2018) no. 15 | DOI:10.1215/00127094-2018-0028
- Tail homogeneity of invariant measures of multidimensional stochastic recursions in a critical case, Probability Theory and Related Fields, Volume 156 (2013) no. 3-4, p. 593 | DOI:10.1007/s00440-012-0437-0
- Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps, Probability Theory and Related Fields, Volume 151 (2011) no. 3-4, p. 705 | DOI:10.1007/s00440-010-0312-9
- Tail-homogeneity of stationary measures for some multidimensional stochastic recursions, Probability Theory and Related Fields, Volume 145 (2009) no. 3-4 | DOI:10.1007/s00440-008-0172-8
- The Key Renewal Theorem for a Transient Markov Chain, Journal of Theoretical Probability, Volume 21 (2008) no. 1, p. 234 | DOI:10.1007/s10959-007-0132-8
Cité par 7 documents. Sources : Crossref