A general Choquet-Deny theorem for nilpotent groups
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 6, pp. 677-683.
@article{AIHPB_2004__40_6_677_0,
     author = {Raugi, Albert},
     title = {A general {Choquet-Deny} theorem for nilpotent groups},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {677--683},
     publisher = {Elsevier},
     volume = {40},
     number = {6},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.06.004},
     zbl = {1063.60006},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/}
}
TY  - JOUR
AU  - Raugi, Albert
TI  - A general Choquet-Deny theorem for nilpotent groups
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 677
EP  - 683
VL  - 40
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/
DO  - 10.1016/j.anihpb.2003.06.004
LA  - en
ID  - AIHPB_2004__40_6_677_0
ER  - 
%0 Journal Article
%A Raugi, Albert
%T A general Choquet-Deny theorem for nilpotent groups
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 677-683
%V 40
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/
%R 10.1016/j.anihpb.2003.06.004
%G en
%F AIHPB_2004__40_6_677_0
Raugi, Albert. A general Choquet-Deny theorem for nilpotent groups. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 6, pp. 677-683. doi : 10.1016/j.anihpb.2003.06.004. https://www.numdam.org/articles/10.1016/j.anihpb.2003.06.004/

[1] R. Azencott, Espaces de Poisson des groupes localement compacts, in: Lecture Notes in Math, vol. 148, Springer, Berlin, 1970. | MR | Zbl

[2] A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, CRAS Sér. A 279 (1974) 25-28. | Zbl

[3] D. Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Stat 26 (1955) 654-658. | MR | Zbl

[4] G. Choquet, J. Deny, Sur l'équation de convolution μ=μ∗σ, CRAS Sér. A 250 (1960) 799-801. | Zbl

[5] Y. Derriennic, Entropie, théorèmes limite et marches aléatoires, in: Lecture Notes in Math, vol. 1210, Springer, Berlin, 1986, pp. 241-284. | MR | Zbl

[6] E.B. Dynkin, M.B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl 2 (1961) 399-402. | Zbl

[7] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin. | Zbl

[8] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. Math., Ser. 2 77 (1963) 335-386. | MR | Zbl

[9] Y. Guivarc'H, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333-379. | Numdam | MR | Zbl

[10] W. Jaworski, Random walks on almost connected locally compact groups: boundary and convergence, J. Anal. Math 74 (1998) 235-273. | MR | Zbl

[11] V.A. Kaimanovich, A.M. Vershik, Random walks on discrete groups. Boundary and entropy, Ann. Probab 11 (1983) 457-490. | MR | Zbl

[12] V.A. Kaimanovich, Poisson Boundaries of Random Walks on Discrete Solvable Groups, Plenum, New York, 1991, pp. 205-238. | Zbl

[13] F. Ledrappier, Poisson boundaries of discrete groups of matrices, CRAS Sér. I 2978 (16) (1984) 393-396. | MR | Zbl

[14] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, 1970. | MR | Zbl

[15] A. Raugi, Périodes des fonctions harmoniques bornées, 1978. | MR

[16] A. Raugi, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math. France 54 (1977) 5-118. | Numdam | MR | Zbl

[17] D. Revuz, Markov Chains, North-Holland, Amsterdam, 1975. | MR | Zbl

  • Cantat, Serge; Dujardin, Romain Random dynamics on real and complex projective surfaces, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2023) no. 0 | DOI:10.1515/crelle-2023-0038
  • Hartman, Yair; Yadin, Ariel Furstenberg entropy of intersectional invariant random subgroups, Compositio Mathematica, Volume 154 (2018) no. 10, p. 2239 | DOI:10.1112/s0010437x18007261
  • Björklund, Michael; Hartnick, Tobias Approximate lattices, Duke Mathematical Journal, Volume 167 (2018) no. 15 | DOI:10.1215/00127094-2018-0028
  • Kolesko, Konrad Tail homogeneity of invariant measures of multidimensional stochastic recursions in a critical case, Probability Theory and Related Fields, Volume 156 (2013) no. 3-4, p. 593 | DOI:10.1007/s00440-012-0437-0
  • Mirek, Mariusz Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps, Probability Theory and Related Fields, Volume 151 (2011) no. 3-4, p. 705 | DOI:10.1007/s00440-010-0312-9
  • Buraczewski, Dariusz; Damek, Ewa; Guivarc’h, Yves; Hulanicki, Andrzej; Urban, Roman Tail-homogeneity of stationary measures for some multidimensional stochastic recursions, Probability Theory and Related Fields, Volume 145 (2009) no. 3-4 | DOI:10.1007/s00440-008-0172-8
  • Korshunov, Dmitry The Key Renewal Theorem for a Transient Markov Chain, Journal of Theoretical Probability, Volume 21 (2008) no. 1, p. 234 | DOI:10.1007/s10959-007-0132-8

Cité par 7 documents. Sources : Crossref