Poisson trees, succession lines and coalescing random walks
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 2, pp. 141-152.
@article{AIHPB_2004__40_2_141_0,
     author = {Ferrari, P. A. and Landim, C. and Thorisson, H.},
     title = {Poisson trees, succession lines and coalescing random walks},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {141--152},
     publisher = {Elsevier},
     volume = {40},
     number = {2},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.12.001},
     mrnumber = {2044812},
     zbl = {1042.60064},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/}
}
TY  - JOUR
AU  - Ferrari, P. A.
AU  - Landim, C.
AU  - Thorisson, H.
TI  - Poisson trees, succession lines and coalescing random walks
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 141
EP  - 152
VL  - 40
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/
DO  - 10.1016/j.anihpb.2003.12.001
LA  - en
ID  - AIHPB_2004__40_2_141_0
ER  - 
%0 Journal Article
%A Ferrari, P. A.
%A Landim, C.
%A Thorisson, H.
%T Poisson trees, succession lines and coalescing random walks
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 141-152
%V 40
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/
%R 10.1016/j.anihpb.2003.12.001
%G en
%F AIHPB_2004__40_2_141_0
Ferrari, P. A.; Landim, C.; Thorisson, H. Poisson trees, succession lines and coalescing random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 2, pp. 141-152. doi : 10.1016/j.anihpb.2003.12.001. https://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/

[1] K.S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Probab. 23 (1) (1995) 87-104. | MR | Zbl

[2] R. Arratia, Coalescing Brownian motions and the voter model on Z, Unpublished manuscript, 1981, available from rarratia@math.usc.edu.

[3] R. Arratia, Coalescing Brownian motions on the line, Phd Thesis. Univ. of Madison, Wisconsin, 1981.

[4] R.M. Burton, M.S. Keane, Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989) 501-505. | MR | Zbl

[5] P.A. Ferrari, L.R.G. Fontes, X.-Y. Wu, Poisson trees converge to Brownian web, http://arxiv.org/abs/math.PR/0304247.

[6] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, http://arxiv.org/abs/math.PR/0304119. | MR

[7] S. Gangopadhyay, R. Roy, A. Sarkar, Random oriented trees: a model of drainage networks, Preprint Indian Statistical Institute isid/ms/2002/05 , http://www.isid.ac.in/statmath/eprints/2002/isid200205.pdf. | MR

[8] O. Häggström, R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms 9 (3) (1996) 295-315. | MR | Zbl

[9] A.E. Holroyd, Y. Peres, Trees and matchings from point processes, http://arxiv.org/abs/math.PR/0211455. | MR

[10] C.M. Newman, D.L. Stein, Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B 46 (1992) 973-982.

[11] C.M. Newman, D.L. Stein, Spin-glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett. 72 (1994) 2286-2289.

[12] I. Rodriguez-Iturbe, A. Rinaldo, Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York, 1997.

[13] H. Thorisson, Point-stationarity in d dimensions and Palm theory, Bernoulli 5 (5) (1999) 797-831. | MR | Zbl

[14] H. Thorisson, Coupling, Stationarity, and Regeneration. Probability and its Applications, Springer-Verlag, New York, 2000. | MR | Zbl

[15] B. Tóth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields 111 (3) (1998) 375-452. | MR | Zbl

  • Benjamini, Itai; Timár, Ádám Invariant embeddings of unimodular random planar graphs, Electronic Journal of Probability, Volume 26 (2021) no. none | DOI:10.1214/21-ejp665
  • Coupier, David; Marckert, Jean-François; Chi Tran, Viet Directed, cylindric and radial Brownian webs, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/18-ejp255
  • Coupier, David Sublinearity of the number of semi-infinite branches for geometric random trees, Electronic Journal of Probability, Volume 23 (2018) no. none | DOI:10.1214/17-ejp115
  • Hirsch, Christian; Jahnel, Benedikt; Keeler, Paul; Patterson, Robert I. A. Traffic flow densities in large transport networks, Advances in Applied Probability, Volume 49 (2017) no. 4, p. 1091 | DOI:10.1017/apr.2017.35
  • Baccelli, François; Haji-Mirsadeghi, Mir-Omid Point-map-probabilities of a point process and Mecke’s invariant measure equation, The Annals of Probability, Volume 45 (2017) no. 3 | DOI:10.1214/16-aop1099
  • Roy, Rahul; Saha, Kumarjit; Sarkar, Anish Random directed forest and the Brownian web, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 52 (2016) no. 3 | DOI:10.1214/15-aihp672
  • Valle, Glauco; Fontes, Luiz Renato; Valencia, Leon Scaling limit of the radial Poissonian web, Electronic Journal of Probability, Volume 20 (2015) no. none | DOI:10.1214/ejp.v20-3395
  • Lopes, Fabio Invariant Bipartite Random Graphs on Rd, Journal of Applied Probability, Volume 51 (2014) no. 03, p. 769 | DOI:10.1017/s0021900200011669
  • Lopes, Fabio Invariant Bipartite Random Graphs on Rd, Journal of Applied Probability, Volume 51 (2014) no. 3, p. 769 | DOI:10.1239/jap/1409932673
  • Sarkar, Anish; Sun, Rongfeng Brownian web in the scaling limit of supercritical oriented percolation in dimension 1 + 1, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2019
  • Coupier, David; Tran, Viet Chi The 2D‐directed spanning forest is almost surely a tree, Random Structures Algorithms, Volume 42 (2013) no. 1, p. 59 | DOI:10.1002/rsa.20400
  • Ferrari, Pablo A.; Grisi, Rafael M.; Groisman, Pablo Harmonic deformation of Delaunay triangulations, Stochastic Processes and their Applications, Volume 122 (2012) no. 5, p. 2185 | DOI:10.1016/j.spa.2012.02.003
  • Lyons, Russell; Nazarov, Fedor Perfect matchings as IID factors on non-amenable groups, European Journal of Combinatorics, Volume 32 (2011) no. 7, p. 1115 | DOI:10.1016/j.ejc.2011.03.008
  • Last, Günter; Thorisson, Hermann What is typical?, Journal of Applied Probability, Volume 48 (2011) no. A, p. 379 | DOI:10.1017/s0021900200099356
  • Last, Günter; Thorisson, Hermann What is typical?, Journal of Applied Probability, Volume 48 (2011) no. A, p. 379 | DOI:10.1239/jap/1318940478
  • Soo, Terry Translation-Equivariant Matchings of Coin Flips on ℤd, Advances in Applied Probability, Volume 42 (2010) no. 1, p. 69 | DOI:10.1239/aap/1269611144
  • Coletti, C. F.; Fontes, L. R. G.; Dias, E. S. Scaling Limit for a Drainage Network Model, Journal of Applied Probability, Volume 46 (2009) no. 04, p. 1184 | DOI:10.1017/s0021900200006215
  • Coletti, C. F.; Fontes, L. R. G.; Dias, E. S. Scaling Limit for a Drainage Network Model, Journal of Applied Probability, Volume 46 (2009) no. 4, p. 1184 | DOI:10.1239/jap/1261670696
  • Athreya, Siva; Roy, Rahul; Sarkar, Anish Random directed trees and forest - drainage networks with dependence, Electronic Journal of Probability, Volume 13 (2008) no. none | DOI:10.1214/ejp.v13-580
  • Thorisson, Hermann The Palm-duality for random subsets of d-dimensional grids, Advances in Applied Probability, Volume 39 (2007) no. 2, p. 318 | DOI:10.1239/aap/1183667612
  • Zerner, Martin The zero-one law for planar random walks in i.i.d. random environments revisited, Electronic Communications in Probability, Volume 12 (2007) no. none | DOI:10.1214/ecp.v12-1314
  • Sigman, Karl Stationary Marked Point Processes, Springer Handbook of Engineering Statistics (2006), p. 137 | DOI:10.1007/978-1-84628-288-1_8
  • Daley, Daryl J.; Last, Günter Descending chains, the lilypond model, and mutual-nearest-neighbour matching, Advances in Applied Probability, Volume 37 (2005) no. 3, p. 604 | DOI:10.1239/aap/1127483738
  • Ball, Karen Poisson Thinning by Monotone Factors, Electronic Communications in Probability, Volume 10 (2005) no. none | DOI:10.1214/ecp.v10-1134
  • Holroyd, Alexander; Peres, Yuval Trees and Matchings from Point Processes, Electronic Communications in Probability, Volume 8 (2003) no. none | DOI:10.1214/ecp.v8-1066

Cité par 25 documents. Sources : Crossref