Functional laws of the iterated logarithm for local times of recurrent random walks on Z 2
Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 4, pp. 545-563.
@article{AIHPB_1998__34_4_545_0,
     author = {Cs\'aki, Endre and R\'ev\'esz, P\'al and Rosen, Jay},
     title = {Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {545--563},
     publisher = {Gauthier-Villars},
     volume = {34},
     number = {4},
     year = {1998},
     mrnumber = {1632833},
     zbl = {0913.60052},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1998__34_4_545_0/}
}
TY  - JOUR
AU  - Csáki, Endre
AU  - Révész, Pál
AU  - Rosen, Jay
TI  - Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1998
SP  - 545
EP  - 563
VL  - 34
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPB_1998__34_4_545_0/
LA  - en
ID  - AIHPB_1998__34_4_545_0
ER  - 
%0 Journal Article
%A Csáki, Endre
%A Révész, Pál
%A Rosen, Jay
%T Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1998
%P 545-563
%V 34
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPB_1998__34_4_545_0/
%G en
%F AIHPB_1998__34_4_545_0
Csáki, Endre; Révész, Pál; Rosen, Jay. Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 4, pp. 545-563. http://www.numdam.org/item/AIHPB_1998__34_4_545_0/

[1] J. Bertoin and M. Caballero, On the rate of growth of subordinators with slowly varying Laplace exponent, Sem. de Prob. XXIX, Lecture Notes Math, Vol. 1612, Springer-Verlag, Berlin, 1995, pp. 125-132. | Numdam | MR | Zbl

[2] L. Breiman, Probability, Society for Industrial and Applied Mathematics, Philadelphia, 1992. | MR | Zbl

[3] E. Csáki, M. Csörgö, A. Földes and P. Révész, On the occupation time of an iterated process having no local time, Stochastic Process. Appl., Vol. 70, 1997, pp. 199-217. | MR | Zbl

[4] P. Erdös and J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hung., Vol. 11, 1960, pp. 137-162. | MR | Zbl

[5] J.-P. Kahane, Some random series of functions, Cambridge University Press, Cambridge, 1985. | MR | Zbl

[6] M. Klass, Toward a universal law of the iterated logarithm, Part I, Z. Wahrsch. verw. Gebiete, Vol. 36, 1976, pp. 165-178. | MR | Zbl

[7] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Levy processes and recurrent random walks in the domain of attraction of Cauchy random variables, Ann. Inst. H. Poincaré Prob. Stat., Vol. 30, 1994, pp. 467-499. | Numdam | MR | Zbl

[8] M. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab., Vol. 22, 1994, pp. 626-658. | MR | Zbl

[9] P. Révész and E. Willekens, On the maximal distance between two renewal epochs, Stochastic Process. Appl., Vol. 27, 1988, pp. 21-41. | MR | Zbl