@article{AIHPA_1998__69_4_359_0, author = {Giannoni, F. and Masiello, A. and Piccione, P.}, title = {A {Morse} theory for light rays on stably causal lorentzian manifolds}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {359--412}, publisher = {Gauthier-Villars}, volume = {69}, number = {4}, year = {1998}, mrnumber = {1659591}, zbl = {0920.58019}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1998__69_4_359_0/} }
TY - JOUR AU - Giannoni, F. AU - Masiello, A. AU - Piccione, P. TI - A Morse theory for light rays on stably causal lorentzian manifolds JO - Annales de l'I.H.P. Physique théorique PY - 1998 SP - 359 EP - 412 VL - 69 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1998__69_4_359_0/ LA - en ID - AIHPA_1998__69_4_359_0 ER -
%0 Journal Article %A Giannoni, F. %A Masiello, A. %A Piccione, P. %T A Morse theory for light rays on stably causal lorentzian manifolds %J Annales de l'I.H.P. Physique théorique %D 1998 %P 359-412 %V 69 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1998__69_4_359_0/ %G en %F AIHPA_1998__69_4_359_0
Giannoni, F.; Masiello, A.; Piccione, P. A Morse theory for light rays on stably causal lorentzian manifolds. Annales de l'I.H.P. Physique théorique, Tome 69 (1998) no. 4, pp. 359-412. http://www.numdam.org/item/AIHPA_1998__69_4_359_0/
[1] Sobolev spaces. Ac. Press. New York, 1975. | MR | Zbl
,[2] A Fermat principle on Lorentzian manifolds and applications, Appl. Math. Lett., Vol. 9, 1996, pp. 91-96. | MR | Zbl
and ,[3] Global Lorentzian Geometry. Marcel Dekker. New York, 1996. | MR | Zbl
and and ,[4] A new approach to Morse-Conley theory and some applications, Ann. Mat. Pura ed Appl., Vol. 158, 1991, pp. 231-305. | MR | Zbl
,[5] Lectures on Morse Theory old and new, Bull. Am. Math. Soc., Vol. 7, 1982, pp. 331-358. | MR | Zbl
,[6] Null geodesics on Lorentz manifolds, in Nonlinear variational problems and partial differential equations, Isola d'Elba 1990 (A. MARINO and M.K.V. MURTHY eds.), pp. 81-84. Pitman research notes in Mathematics, Vol. 320. Longman, London 1995. | MR | Zbl
, and ,[7] Nonlinear Functional Analysis. Springer-Verlag, Berlin 1985. | MR | Zbl
,[8] A Fermat principle for stationary space-times with applications to light rays, J. Geom. Phys., Vol. 15, 1995, pp. 159-188. | MR | Zbl
, and ,[9] Morse Theory for light rays without nondegeneration assumptions, Nonlinear World, Vol. 4, 1997, pp. 173-206. | MR | Zbl
,[10] Morse Relations for geodesics on stationary Lorentzian manifolds with boundary, Top. Meth. in Nonlinear Anal., Vol. 6, 1995, pp. 1-30. | MR | Zbl
and ,[11] On a Fermat principle in General Relativity. A Ljustemik-Schnirelmann theory for light rays, Ann. Mat. Pura Appl., in press. | Zbl
and ,[12] On a Fermat principle in General Relativity. A Morse Theory for light rays, Gen. Rel. Grav., Vol. 28, 1996, pp. 855-897. | MR | Zbl
and ,[13] A variational theory for light rays on causally stable Lorentzian manifolds: Regularity and multiplicity results, Comm. Math. Phys., Vol. 187, 1997, pp. 375-415. | MR | Zbl
, and ,[14] A variational theory for light rays on causally stable Lorentzian manifolds II: Existence and multiplicity results, preprint n. 16/96 Dip. Mat. Univ. Bari, 1996.
, and ,[15] The Large Scale Structure of Space-Time. Cambridge University Press, London/New York, 1973. | MR | Zbl
and ,[16] General Topology. Van Nostrand, Princeton 1955. | MR | Zbl
,[17] Riemannian Geometry. W. de Gruyter, Berlin/New York, 1982. | MR | Zbl
,[18] Fermat principles for arbitrary space-times, Astrophys. J., Vol. 351, 1990, pp. 114-120.
,[19] Fondamenti di Meccanica Relativistica. Zanichelli, Bologna 1928. | JFM
,[20] Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, 309. Longman, London 1994. | MR | Zbl
,[21 ] Shortening null geodesics in stationary Lorentzian manifolds. Applications to closed light rays, Diff. Geom. Appl., Vol. 8, 1998, pp. 47-70. | MR | Zbl
and ,[22] Critical Point Theory and Hamiltonian Systems. Springer-Verlag, Berlin, 1989. | MR | Zbl
and ,[23] A gravitational lens produces an odd number of images, J. Math. Phys., Vol. 26, 1985, pp. 1592-1596. | MR | Zbl
,[24] Morse Theory. Princeton University Press, Princeton, 1963. | MR | Zbl
,[25] The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., Vol. 18, 1934. | JFM | Zbl
,[26] Semi-Riemannian Geometry with applications to Relativity. Acad. Press, New-York-London, 1983. | Zbl
,[27] Morse Theory on Hilbert manifolds, Topology, Vol. 2, 1963, pp. 299-340. | MR | Zbl
,[28] On Fermat's principle in General Relativity: I. The general case, Class. Quantum Grav., Vol. 7, 1990, pp. 1319-1331. | MR | Zbl
,[29] Infinite dimensional Morse Theory and Fermat's principle in general relativity. I, J. Math. Phys., Vol. 36, 1995, pp. 6915-6928. | MR | Zbl
,[30] Morse Theory and gravitational microlensing, J. Math. Phys., 1992, Vol. 33, pp. 1915-1931. | MR
,[3 1 ] Multiplane gravitational lensing. I. Morse Theory and image counting, J. Math. Phys., Vol. 36, 1995, pp. 4263-4275. | MR | Zbl
,[32] Multiplane gravitational lensing. II. Global Geometry of caustics, J. Math. Phys., Vol. 36, 1995, pp. 4276-4295. | MR | Zbl
,[33] Gravitational lensing. Springer, Berlin, 1992.
, and ,[34] Homologie singuliere des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425-505. | MR | Zbl
,[35] Algebraic Topology. Mc Graw Hill. New York, 1966. | MR | Zbl
,[36] A Morse Theory for geodesics on a Lorentz manifold, Topology, Vol. 14, 1975, pp. 69-90. | MR | Zbl
,[37] Zur Gravitationstheorie, Annln. Phys., Vol. 54, 1917, pp. 117-145. | JFM
,