@article{AIHPA_1989__50_2_219_0, author = {Mladenov, Ivailo M.}, title = {Geometric quantization of the {MIC-Kepler} problem via extension of the phase space}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {219--227}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {1989}, mrnumber = {1002821}, zbl = {0695.70006}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1989__50_2_219_0/} }
TY - JOUR AU - Mladenov, Ivailo M. TI - Geometric quantization of the MIC-Kepler problem via extension of the phase space JO - Annales de l'I.H.P. Physique théorique PY - 1989 SP - 219 EP - 227 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1989__50_2_219_0/ LA - en ID - AIHPA_1989__50_2_219_0 ER -
%0 Journal Article %A Mladenov, Ivailo M. %T Geometric quantization of the MIC-Kepler problem via extension of the phase space %J Annales de l'I.H.P. Physique théorique %D 1989 %P 219-227 %V 50 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1989__50_2_219_0/ %G en %F AIHPA_1989__50_2_219_0
Mladenov, Ivailo M. Geometric quantization of the MIC-Kepler problem via extension of the phase space. Annales de l'I.H.P. Physique théorique, Tome 50 (1989) no. 2, pp. 219-227. http://www.numdam.org/item/AIHPA_1989__50_2_219_0/
[1] Reduction of Symplectic Manifolds with Symmetry. Rep. Math. Phys., vol. 5, 1974, p. 121-130. | MR | Zbl
, ,[2] Quantization and Unitary Representations, Lecture Notes in Mathematics, vol. 170, 1970, p. 87-208. | MR | Zbl
,[3] Structure des Systèmes Dynamiques, Dunod, Paris, 1970. | MR | Zbl
,[4] On the Reduced Phase Space of a Cotangent Bundle. Lett. Math. Phys., t. 8, 1984, p. 189-194. | MR | Zbl
,[5] Geometric Quantization and Multiplicities of Group Representations. Invent. Math., t. 67, 1982, p. 515-538. | MR | Zbl
, ,[6] Constraints, Reduction and Quantization. J. Math. Phys., t. 27, 1986, p. 2051-2066. | MR | Zbl
,[7] On the Construction of the Reduced Phase Space of a Hamiltonian System with Symmetry. Indiana Univ. Math. J., t. 30, 1981, p. 281-291. | MR | Zbl
,[8] Foundation of Mechanics. Benjamin, Mass. 1978.
, ,[9] Dynamical Systems. A Différential Geometric Approach to Symmetry and Reduction, Wiley, Chichester, 1985. | MR | Zbl
, , , ,[10] Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht, 1987. | MR | Zbl
, ,[11] The Four-Dimensional Conformal Kepler Problem Reduces to the Three-Dimensional Kepler Problem with a Centrifugal Potential and Dirac's Monopole Field. Classical Theory. J. Math. Phys., t. 27, 1986, p. 1523-1529. | MR | Zbl
, ,[12] Geometric Quantisation of the MIC-Kepler Problem. J. Phys. A. Math. Gen., t. 20, 1987, p. 5865-5871. | MR | Zbl
, ,[13] The Use of Nonbijective Canonical Transformations in Chemical Physics. Croatica Chem. Acta, t. 57, 1984, p. 1509-1523.
, ,[14] Generalized KS Transformation: From Five-Dimensional Hydrogen Atom to EightDimensional Isotrope Oscillator. J. Phys. A. Math. Gen., t. 20, 1987, p. 6121-6125. | MR
, , , , ,[15]
, , University of Calgary, 1988.[16] Monopole Scattering Spectrum from Geometric Quantisation. J. Phys. A. Math. Gen., t. 21, 1988, p. 2835-2837. | MR | Zbl
, , ,