Inverse scattering problem for the Maxwell equations outside moving body
Annales de l'I.H.P. Physique théorique, Tome 50 (1989) no. 1, pp. 37-70.
@article{AIHPA_1989__50_1_37_0,
     author = {Georgiev, Vladimir},
     title = {Inverse scattering problem for the {Maxwell} equations outside moving body},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {37--70},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {1},
     year = {1989},
     mrnumber = {994042},
     zbl = {0675.35066},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1989__50_1_37_0/}
}
TY  - JOUR
AU  - Georgiev, Vladimir
TI  - Inverse scattering problem for the Maxwell equations outside moving body
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1989
SP  - 37
EP  - 70
VL  - 50
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1989__50_1_37_0/
LA  - en
ID  - AIHPA_1989__50_1_37_0
ER  - 
%0 Journal Article
%A Georgiev, Vladimir
%T Inverse scattering problem for the Maxwell equations outside moving body
%J Annales de l'I.H.P. Physique théorique
%D 1989
%P 37-70
%V 50
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1989__50_1_37_0/
%G en
%F AIHPA_1989__50_1_37_0
Georgiev, Vladimir. Inverse scattering problem for the Maxwell equations outside moving body. Annales de l'I.H.P. Physique théorique, Tome 50 (1989) no. 1, pp. 37-70. http://www.numdam.org/item/AIHPA_1989__50_1_37_0/

[1] A. Bachelot et V. Petkov, Existence de l'opérateur de diffusion pour l'equation des ondes avec un potentiel périodique en temps, C. R. Acad. Sci. Paris, Série I, t. 303, 1986, p. 671-673. | MR | Zbl

[2] A. Bachelot et V. Petkov, Opérateurs d'ondes pour les systèmes hyperboliques avec un potentiel périodique en temps, Ann. Inst. Henri Poincare, Physique Théorique, t. 47, 1987, p. 383-428. | Numdam | MR | Zbl

[3] J. Cooper and W. Strauss, Energy boundness and local energy decay of waves reflecting of a moving obstacle, Indiana Univ. Math. J., t. 25, 1976, p. 671-690. | MR | Zbl

[4] J. Cooper and W. Strauss, Representation of the scattering operator for moving obstacles, Indiana Univ. Math. J., t. 28, 1979, p. 643-671. | MR | Zbl

[5] J. Cooper and W. Strauss, Scattering of waves by periodically moving bodies, J. Funct. Anal., t. 47, 1982, p. 180-229. | MR | Zbl

[6] J. Cooper and W. Strauss, Abstract scattering theory for time periodic systems with applications to electromagnetism, Indiana Univ. Math. J., t. 34, 1985, p. 33-83. | MR | Zbl

[7] J. Cooper and W. Strauss, The leading singularity of a wave reflected by a moving boundary, J. Diff. Eq., t. 52, 1984, p. 175-203. | MR | Zbl

[8] J. Cooper and W. Strauss, The initial-boundary problem for the Maxwell equations in the presence of a moving body, SIAM, Journal Math. Anal., t. 16, 1985, p. 1165- 1179. | MR | Zbl

[9] J. Coper and W. Strauss, Unpiblished manuscript, 1985.

[10] I. Gelfand, M. Graev, H. Vilenkin, Integral geometry and associated questions of representation theory, Moscow, 1962 (in Russian).

[11] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math., t. 113, 1965, p. 153-180. | MR | Zbl

[12] L. Hörmander, The analysis of linear partial differential operators I, Distribution theory and Fourier Analysis, Springer Verlag, Berlin-Heidelberg-New York-Toronto, 1983. | MR | Zbl

[13] H. Iwashita, Spectral theory for symmetric systems in an exterior domain, preprint, to appear in Tsukuba, J. Math. | MR | Zbl

[14] H. Iwashita, Spectral theory for symmetric systems in an exterior domain. II. Part, preprint. | MR | Zbl

[15] T. Kato, Linear evolution equations of « hyperbolic » type, J. Fac. Sci. Univ. Tokyo, t. 17, 1970, p. 241-258. | MR | Zbl

[16] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967. | MR | Zbl

[17] P. Lax and R. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., t. 13, 1960, p. 427-455. | MR | Zbl

[18] A. Majda and S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., t. 28, 1975, p. 607-675. | MR | Zbl

[19] A. Majda, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., t. 30, 1977, p. 165-194. | MR | Zbl

[20] A. Majda and M. Taylor, Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. Part. Diff. Eq., t. 2, 1977, p. 395-438. | MR | Zbl

[21] R. Melrose, Forward scattering by a convex obstacle, Comm. Pure Appl. Math., t. 33,1980, p. 461-499. | MR | Zbl

[22] R. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J., t. 46, 1979, p. 43-59. | MR | Zbl

[23[ V. Petkov, Representation of the scattering operator for dissipative hyperbolic systems, Comm. PDE, t. 6, 1981, p. 993-1022. | MR | Zbl

[24] V. Petkov, Scattering theory for hyperbolic operators, Notas de Curso, n° 24, Departemento de Matematica, Universidade Federal de Pernambuco, Recife, 1987. | MR

[25] V. Petkov and Ts. Rangelov, Leading singularity of the scattering kernel, Comp. Rend. Acad. Sci. bulg., t. 40, n° 12, 1987, p. 5-8. | MR | Zbl

[26] J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., t. 189, 1974, p. 303-318. | MR | Zbl

[27] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., t. 291, 1985, p. 167-187. | MR | Zbl

[28] G. Schmidt, Spectral and scattering theory for Maxwell's equations in an exterior domain, Arch. Rat. Mech. Anal., t. 28, 1975, p. 284-322. | Zbl

[29] H. Soga, Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ., t. 22, 1983, p. 729-765. | MR | Zbl

[30] M. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, New Jersey, 1981. | MR | Zbl

[31] M. Taylor, Reflection of singularities of solutions to systems of differential equations, CPAM, t. 27, 1975, p. 457-478. | MR | Zbl

[32] R. Utiama, Theory of Relativity, Iwanami, 1977 (in Japan).

[33] J. Van Bladel, Electromagnetic fields in the presence of rotation bodies, Proc. IEEE, t. 64, 1976, p. 301-318.