On considère la classe des variétés QIS (Quantum Inner State variétés), à savoir la classe des variétés symplectiques, compactes et de dimension
Le but du papier est d’étudier l’espace
We introduce Quantum Inner State manifolds (QIS manifolds) as (compact)
We study the moduli space
Keywords: tamed symplectic structure, Calabi-Yau manifold, quantum inner state structure, deformation, moduli space
Mot clés : variétés de Calabi-Yau
@article{AIF_2013__63_2_391_0, author = {de Bartolomeis, Paolo and Tomassini, Adriano}, title = {Exotic {Deformations} of {Calabi-Yau} {Manifolds}}, journal = {Annales de l'Institut Fourier}, pages = {391--415}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2764}, zbl = {1293.32016}, mrnumber = {3112516}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2764/} }
TY - JOUR AU - de Bartolomeis, Paolo AU - Tomassini, Adriano TI - Exotic Deformations of Calabi-Yau Manifolds JO - Annales de l'Institut Fourier PY - 2013 SP - 391 EP - 415 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2764/ DO - 10.5802/aif.2764 LA - en ID - AIF_2013__63_2_391_0 ER -
%0 Journal Article %A de Bartolomeis, Paolo %A Tomassini, Adriano %T Exotic Deformations of Calabi-Yau Manifolds %J Annales de l'Institut Fourier %D 2013 %P 391-415 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2764/ %R 10.5802/aif.2764 %G en %F AIF_2013__63_2_391_0
de Bartolomeis, Paolo; Tomassini, Adriano. Exotic Deformations of Calabi-Yau Manifolds. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 391-415. doi : 10.5802/aif.2764. https://www.numdam.org/articles/10.5802/aif.2764/
[1] Flows on homogeneous spaces, With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, N.J., 1963 | Zbl
[2] Some constructions with Symplectic Manifolds and Lagrangian Submanifolds (preprint)
[3] On formality of some symplectic manifolds, Internat. Math. Res. Notices (2001) no. 24, pp. 1287-1314 | DOI | MR | Zbl
[4] On the Maslov index of Lagrangian submanifolds of generalized Calabi-Yau manifolds, Internat. J. Math., Volume 17 (2006) no. 8, pp. 921-947 | DOI | MR | Zbl
[5] On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2), Volume 96 (1972), pp. 413-443 | DOI | MR | Zbl
[6] Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | MR | Zbl
[7] Compact symplectic solvmanifolds not admitting complex structures, Geom. Dedicata, Volume 34 (1990) no. 3, pp. 295-299 | DOI | MR | Zbl
[8] The moduli space of Kähler structures on a real compact symplectic manifold, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 1, pp. 141-168 | DOI | MR | Zbl
[9] Complex and Kähler structures on compact solvmanifolds, J. Symplectic Geom., Volume 3 (2005) no. 4, pp. 749-767 http://projecteuclid.org/getRecord?id=euclid.jsg/1154467635 (Conference on Symplectic Topology) | DOI | MR | Zbl
[10] A note on compact solvmanifolds with Kähler structures, Osaka J. Math., Volume 43 (2006) no. 1, pp. 131-135 http://projecteuclid.org/getRecord?id=euclid.ojm/1146242998 | MR | Zbl
[11] Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I, Volume 8 (1960), p. 289-331 (1960) | MR | Zbl
[12] Generalized Calabi-Yau manifolds, Q. J. Math., Volume 54 (2003) no. 3, pp. 281-308 | DOI | MR | Zbl
[13] Introduction: applications of pseudo-holomorphic curves to symplectic topology, Holomorphic curves in symplectic geometry (Progr. Math.), Volume 117, Birkhäuser, Basel, 1994, pp. 1-14 | MR
[14] On a class of homogeneous spaces, Amer. Math. Soc. Translation, Volume 1951 (1951) no. 39, pp. 33 | MR
[15] Complex parallelisable manifolds and their small deformations, J. Differential Geometry, Volume 10 (1975), pp. 85-112 | MR | Zbl
[16] Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) (Adv. Ser. Math. Phys.), Volume 1, World Sci. Publishing, Singapore, 1987, pp. 629-646 | MR | Zbl
[17] The Weil-Petersson geometry of the moduli space of
[18] Hodge structure on symplectic manifolds, Adv. Math., Volume 120 (1996) no. 1, pp. 143-154 | DOI | MR | Zbl
[19] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | MR | Zbl
- Memories of Paolo de Bartolomeis, Bollettino dell'Unione Matematica Italiana, Volume 12 (2019) no. 1-2, p. 307 | DOI:10.1007/s40574-018-0186-9
- Preliminaries on (Almost-)Complex Manifolds, Cohomological Aspects in Complex Non-Kähler Geometry, Volume 2095 (2014), p. 1 | DOI:10.1007/978-3-319-02441-7_1
Cité par 2 documents. Sources : Crossref