Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
[Continuité Hölder des solutions des équations de Monge-Ampère sur les variétés Kählériennes]
Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1857-1869.

Nous étudions la continuité de Hölder des solutions des équations de Monge-Ampère sur des variétés Kählériennes compactes. T. C. Dinh, V.A. Nguyen et N. Sibony ont prouvé que ωun est modéré si u est Hölder-continue. Nous démontrons dans quelques cas la réciproque de ce résultat.

We study Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. T. C. Dinh, V.A. Nguyen and N. Sibony have shown that the measure ωun is moderate if u is Hölder continuous. We prove a theorem which is a partial converse to this result.

DOI : 10.5802/aif.2574
Classification : 32W20, 32Q15
Keywords: Hölder continuity, complex Monge-Ampère operator, ω-plurisubharmonic functions, compact Kähler manifolds
Mot clés : continuité de Hölder, opérateur complexe de Monge-Ampère, fonctions ω-pluriharmoniques, variétés de Kähler compactes
Hiep, Pham Hoang 1

1 University of Education (Dai hoc Su Pham Ha Noi) Department of Mathematics CauGiay, Hanoi (Vietnam)
@article{AIF_2010__60_5_1857_0,
     author = {Hiep, Pham Hoang},
     title = {H\"older continuity of solutions to the {Monge-Amp\`ere} equations on compact {K\"ahler} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1857--1869},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {5},
     year = {2010},
     doi = {10.5802/aif.2574},
     zbl = {1208.32033},
     mrnumber = {2766232},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2574/}
}
TY  - JOUR
AU  - Hiep, Pham Hoang
TI  - Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 1857
EP  - 1869
VL  - 60
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2574/
DO  - 10.5802/aif.2574
LA  - en
ID  - AIF_2010__60_5_1857_0
ER  - 
%0 Journal Article
%A Hiep, Pham Hoang
%T Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds
%J Annales de l'Institut Fourier
%D 2010
%P 1857-1869
%V 60
%N 5
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2574/
%R 10.5802/aif.2574
%G en
%F AIF_2010__60_5_1857_0
Hiep, Pham Hoang. Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds. Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1857-1869. doi : 10.5802/aif.2574. https://www.numdam.org/articles/10.5802/aif.2574/

[1] Armitage, David H.; Gardiner, Stephen J. Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2001 | MR | Zbl

[2] Bedford, Eric; Taylor, B. A. The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | MR | Zbl

[3] Bedford, Eric; Taylor, B. A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982) no. 1-2, pp. 1-40 | DOI | MR | Zbl

[4] Cegrell, U.; Kołodziej, S. The equation of complex Monge-Ampère type and stability of solutions, Math. Ann., Volume 334 (2006) no. 4, pp. 713-729 | DOI | MR | Zbl

[5] Cegrell, Urban Pluricomplex energy, Acta Math., Volume 180 (1998) no. 2, pp. 187-217 | DOI | MR | Zbl

[6] Cegrell, Urban The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 1, pp. 159-179 | DOI | Numdam | MR | Zbl

[7] Coman, Dan; Guedj, Vincent; Zeriahi, Ahmed Domains of definition of Monge-Ampère operators on compact Kähler manifolds, Math. Z., Volume 259 (2008) no. 2, pp. 393-418 | DOI | MR | Zbl

[8] Demailly, J. P. Complex analytic and differential geometry, self published e-book (1997)

[9] Demailly, Jean-Pierre Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., Volume 194 (1987) no. 4, pp. 519-564 | DOI | MR | Zbl

[10] Demailly, Jean-Pierre Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (Univ. Ser. Math.), Plenum, New York, 1993, pp. 115-193 | MR | Zbl

[11] Dinew, S.; Hiep, P. H. Convergence in capacity on compact Kähler manifolds (2009) Preprint, (http://arxiv.org) | MR

[12] Dinew, S.; Zhang, Z. Stability of Bounded Solutions for Degenerate Complex Monge-Ampère equations (2008) Preprint, (http://arxiv.org)

[13] Dinew, Sławomir Cegrell classes on compact Kähler manifolds, Ann. Polon. Math., Volume 91 (2007) no. 2-3, pp. 179-195 | DOI | MR | Zbl

[14] Dinew, Sławomir An inequality for mixed Monge-Ampère measures, Math. Z., Volume 262 (2009) no. 1, pp. 1-15 | DOI | MR | Zbl

[15] Dinew, Sławomir Uniqueness in (X,ω), J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113-2122 | DOI | MR | Zbl

[16] Dinh, T. C.; Nguyen, V. A.; Sibony, N. Exponential estimates for plurisubharmonic functions and stochastic dynamics (2008) Preprint, (http://arxiv.org)

[17] Dinh, Tien-Cuong; Sibony, Nessim Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv., Volume 81 (2006) no. 1, pp. 221-258 | DOI | MR | Zbl

[18] Eyssidieux, Philippe; Guedj, Vincent; Zeriahi, Ahmed Singular Kähler-Einstein metrics, J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 607-639 | DOI | MR

[19] Guedj, Vincent; Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639 | MR | Zbl

[20] Guedj, Vincent; Zeriahi, Ahmed The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482 | DOI | MR | Zbl

[21] Hiep, P. H. On the convergence in capacity on compact Kähler manifolds and its applications, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 2007-2018 | DOI | MR | Zbl

[22] Hörmander, Lars Notions of convexity, Progress in Mathematics, 127, Birkhäuser Boston Inc., Boston, MA, 1994 | MR | Zbl

[23] Kołodziej, Sławomir The complex Monge-Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | MR | Zbl

[24] Kołodziej, Sławomir The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003) no. 3, pp. 667-686 | DOI | Zbl

[25] Kołodziej, Sławomir The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., Volume 178 (2005) no. 840, pp. x+64 | Zbl

[26] Kołodziej, Sławomir The set of measures given by bounded solutions of the complex Monge-Ampère equation on compact Kähler manifolds, J. London Math. Soc. (2), Volume 72 (2005) no. 1, pp. 225-238 | DOI | MR | Zbl

[27] Kołodziej, Sławomir Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in Lp: the case of compact Kähler manifolds, Math. Ann., Volume 342 (2008) no. 2, pp. 379-386 | DOI | MR | Zbl

[28] Kołodziej, Sławomir; Tian, Gang A uniform L estimate for complex Monge-Ampère equations, Math. Ann., Volume 342 (2008) no. 4, pp. 773-787 | DOI | MR | Zbl

[29] Siciak, Józef On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc., Volume 105 (1962), pp. 322-357 | DOI | MR | Zbl

[30] Siciak, Józef Franciszek Leja (1885–1979), Wiadom. Mat., Volume 24 (1982) no. 1, pp. 65-90 | MR | Zbl

[31] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | MR | Zbl

[32] Zeriahi, Ahmed The size of plurisubharmonic lemniscates in terms of Hausdorff-Riesz measures and capacities, Proc. London Math. Soc. (3), Volume 89 (2004) no. 1, pp. 104-122 | DOI | MR | Zbl

[33] Zeriahi, Ahmed A minimum principle for plurisubharmonic functions, Indiana Univ. Math. J., Volume 56 (2007) no. 6, pp. 2671-2696 | DOI | MR | Zbl

  • Van Trao, Nguyen; Xuan Hong, Nguyen; Nguyen Thu Trang, Pham Hölder continuity of solutions of the Dirichlet problem in pseudoconvex domains, Complex Variables and Elliptic Equations, Volume 69 (2024) no. 9, p. 1523 | DOI:10.1080/17476933.2023.2229746
  • Amal, Hichame; Asserda, Saïd; Bouhssina, Manar Hölder continuity for solutions of the complex Hessian type equation, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 73 (2024) no. 1, p. 267 | DOI:10.1007/s12215-023-00919-y
  • Amal, Hichame; Asserda, Saïd; Bouhssina, Manar Continuous Solutions for Degenerate Complex Hessian Equation, Acta Mathematica Vietnamica, Volume 48 (2023) no. 2, p. 371 | DOI:10.1007/s40306-023-00498-1
  • Trang, Pham Nguyen Thu; Hung, Nguyen Duc; Hong, Nguyen Xuan Envelope of plurisubharmonic functions in Cegrell’s classes, Analysis and Mathematical Physics, Volume 12 (2022) no. 6 | DOI:10.1007/s13324-022-00742-1
  • Dinh, Tien‐Cuong; Kołodziej, Sławomir; Nguyen, Ngoc Cuong The complex Sobolev space and Hölder continuous solutions to Monge–Ampère equations, Bulletin of the London Mathematical Society, Volume 54 (2022) no. 2, p. 772 | DOI:10.1112/blms.12600
  • Hong, Nguyen Xuan; Lieu, Pham Thi Local Hölder continuity of solutions of the complex Monge-Ampère equation, Journal of Mathematical Analysis and Applications, Volume 507 (2022) no. 1, p. 125737 | DOI:10.1016/j.jmaa.2021.125737
  • Quan, Vu Van The Dini type condition in the existence of continuous solutions to the complex Monge-Ampère equations on compact Kähler manifolds, Journal of Mathematical Analysis and Applications, Volume 513 (2022) no. 1, p. 126218 | DOI:10.1016/j.jmaa.2022.126218
  • Kołodziej, Sławomir; Nguyen, Ngoc Cuong Continuous solutions to Monge–Ampère equations on Hermitian manifolds for measures dominated by capacity, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 3 | DOI:10.1007/s00526-021-01944-4
  • Hai, Le Mau; Quan, Vu Van Hölder continuity for solutions of the complex Monge-Ampère type equation, Journal of Mathematical Analysis and Applications, Volume 494 (2021) no. 1, p. 124586 | DOI:10.1016/j.jmaa.2020.124586
  • Hung, V. V.; Quy, H. N. A Remark on Covering of Compact Kähler Manifolds and Applications, Ukrainian Mathematical Journal, Volume 73 (2021) no. 1, p. 156 | DOI:10.1007/s11253-021-01915-0
  • Nguyen, Ngoc Cuong On the Hölder continuous subsolution problem for the complex Monge–Ampère equation, II, Analysis PDE, Volume 13 (2020) no. 2, p. 435 | DOI:10.2140/apde.2020.13.435
  • Hong, Nguyen Xuan; Van Thuy, Tran Hölder continuous solutions to the complex Monge–Ampère equations in non-smooth pseudoconvex domains, Analysis and Mathematical Physics, Volume 8 (2018) no. 3, p. 465 | DOI:10.1007/s13324-017-0175-7
  • Nguyen, Ngoc Cuong On the Hölder continuous subsolution problem for the complex Monge–Ampère equation, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 1 | DOI:10.1007/s00526-017-1297-3
  • Vu, Duc-Viet Complex Monge–Ampère equation for measures supported on real submanifolds, Mathematische Annalen, Volume 372 (2018) no. 1-2, p. 321 | DOI:10.1007/s00208-017-1565-8
  • Vu, Duc-Viet Families of Monge-Ampère measures with Hölder continuous potentials, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 10, p. 4275 | DOI:10.1090/proc/14076
  • Dinew, S.; Guedj, V.; Zeriahi, A. Open problems in pluripotential theory, Complex Variables and Elliptic Equations, Volume 61 (2016) no. 7, p. 902 | DOI:10.1080/17476933.2015.1121481
  • Dinh, Tien-Cuong; Nguyên, Viêt-Anh Characterization of Monge–Ampère measures with Hölder continuous potentials, Journal of Functional Analysis, Volume 266 (2014) no. 1, p. 67 | DOI:10.1016/j.jfa.2013.08.026
  • Berman, Robert J. A thermodynamical formalism for Monge–Ampère equations, Moser–Trudinger inequalities and Kähler–Einstein metrics, Advances in Mathematics, Volume 248 (2013), p. 1254 | DOI:10.1016/j.aim.2013.08.024

Cité par 18 documents. Sources : Crossref