Si une variété
If a smooth projective variety
Keywords: Value distribution theory, holomorphic map, fundamental group, algebraic variety
Mot clés : théorie de distributions des valeurs, application holomorphe, groupe fondamental, variété algébrique
@article{AIF_2010__60_2_551_0, author = {Yamanoi, Katsutoshi}, title = {On fundamental groups of algebraic varieties and value distribution theory}, journal = {Annales de l'Institut Fourier}, pages = {551--563}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {2}, year = {2010}, doi = {10.5802/aif.2532}, zbl = {1193.32010}, mrnumber = {2667786}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2532/} }
TY - JOUR AU - Yamanoi, Katsutoshi TI - On fundamental groups of algebraic varieties and value distribution theory JO - Annales de l'Institut Fourier PY - 2010 SP - 551 EP - 563 VL - 60 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2532/ DO - 10.5802/aif.2532 LA - en ID - AIF_2010__60_2_551_0 ER -
%0 Journal Article %A Yamanoi, Katsutoshi %T On fundamental groups of algebraic varieties and value distribution theory %J Annales de l'Institut Fourier %D 2010 %P 551-563 %V 60 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2532/ %R 10.5802/aif.2532 %G en %F AIF_2010__60_2_551_0
Yamanoi, Katsutoshi. On fundamental groups of algebraic varieties and value distribution theory. Annales de l'Institut Fourier, Tome 60 (2010) no. 2, pp. 551-563. doi : 10.5802/aif.2532. https://www.numdam.org/articles/10.5802/aif.2532/
[1] Réseaux arithmétiques et commensurateur d’après G. A. Margulis, Invent. Math., Volume 116 (1994) no. 1-3, pp. 1-25 | DOI | MR | Zbl
[2] Algebraic surfaces holomorphically dominable by
[3] Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom., Volume 10 (2001) no. 4, pp. 599-622 | MR | Zbl
[4] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl
[5] Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math., Volume 156 (2004) no. 3, pp. 503-564 | DOI | MR | Zbl
[6] Locally homogeneous complex manifolds, Acta Math., Volume 123 (1969), pp. 253-302 | DOI | MR | Zbl
[7] Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, Bombay, 1975, pp. 31-127 | MR | Zbl
[8] Harmonic maps into singular spaces and
[9] Harmonic maps into Bruhat-Tits buildings and factorizations of
[10] On the Shafarevich maps, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 173-216 | MR | Zbl
[11] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | DOI | MR | Zbl
[12] Meromorphic mappings of a covering space over
[13] On the value distribution of meromorphic mappings of covering spaces over
[14] Geometric function theory in several complex variables, Translations of Mathematical Monographs, 80, American Mathematical Society, Providence, RI, 1990 (Translated from the Japanese by Noguchi) | MR | Zbl
[15] Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9), Volume 88 (2007) no. 3, pp. 293-306 | MR | Zbl
[16] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, pp. 5-95 | DOI | Numdam | MR | Zbl
[17] Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties II (preprint)
[18] Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math., Volume 16 (2004) no. 5, pp. 749-788 | DOI | MR | Zbl
[19] Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhäuser Verlag, Basel, 1984 | MR | Zbl
[20] Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of
[21] Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, 1708, Springer-Verlag, Berlin, 1999 | MR | Zbl
Cité par Sources :