Nous présentons un exemple de structure o-minimale n’admettant pas la propriété de décomposition cellulaire
We present an example of an o-minimal structure which does not admit
Keywords: o-minimal, smooth cell decomposition
Mot clés : o-minimal, decomposition cellulaire lisse
@article{AIF_2009__59_2_543_0, author = {Le Gal, Olivier and Rolin, Jean-Philippe}, title = {An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition}, journal = {Annales de l'Institut Fourier}, pages = {543--562}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {2}, year = {2009}, doi = {10.5802/aif.2439}, zbl = {1193.03065}, mrnumber = {2521427}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2439/} }
TY - JOUR AU - Le Gal, Olivier AU - Rolin, Jean-Philippe TI - An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition JO - Annales de l'Institut Fourier PY - 2009 SP - 543 EP - 562 VL - 59 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2439/ DO - 10.5802/aif.2439 LA - en ID - AIF_2009__59_2_543_0 ER -
%0 Journal Article %A Le Gal, Olivier %A Rolin, Jean-Philippe %T An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition %J Annales de l'Institut Fourier %D 2009 %P 543-562 %V 59 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2439/ %R 10.5802/aif.2439 %G en %F AIF_2009__59_2_543_0
Le Gal, Olivier; Rolin, Jean-Philippe. An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 543-562. doi : 10.5802/aif.2439. https://www.numdam.org/articles/10.5802/aif.2439/
[1] Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | DOI | Numdam | MR | Zbl
[2]
[3] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[4] The real field with convergent generalized power series, Trans. Amer. Math. Soc., Volume 350 (1998) no. 11, pp. 4377-4421 | DOI | MR | Zbl
[5] The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3), Volume 81 (2000) no. 3, pp. 513-565 | DOI | MR | Zbl
[6] Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Volume 125 (1996) no. 1, pp. 1-12 | DOI | MR | Zbl
[7] Idéaux de fonctions différentiables et division des distributions, Distributions, Ed. Éc. Polytech., Palaiseau, 2003, pp. 1-21 With an Appendix: “Stanisław Łojasiewicz (1926–2002)” | MR
[8] Sur les fonctions indéfiniment dérivables, Acta Math., Volume 72 (1940), pp. 15-29 | DOI | MR
[9] Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Volume 16 (2003) no. 4, p. 751-777 (electronic) | DOI | MR | Zbl
[10] A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.), Volume 5 (1999) no. 4, pp. 397-421 | DOI | MR | Zbl
- Half a Century with the Problem of the Gradient of an Analytic Function, Handbook of Geometry and Topology of Singularities V: Foliations (2024), p. 335 | DOI:10.1007/978-3-031-52481-3_7
- Additive reducts of real closed fields and strongly bounded structures, Model Theory, Volume 2 (2023) no. 2, p. 381 | DOI:10.2140/mt.2023.2.381
- Approximations in globally subanalytic and Denjoy-Carleman classes, Advances in Mathematics, Volume 385 (2021), p. 107764 | DOI:10.1016/j.aim.2021.107764
- Transversality of smooth definable maps in O-minimal structures, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 168 (2020) no. 3, p. 519 | DOI:10.1017/s0305004118000920
- On Local definability of holomorphic functions, The Quarterly Journal of Mathematics (2019) | DOI:10.1093/qmath/haz015
- Cohomology of flat currents on definable pseudomanifolds, Journal of Mathematical Analysis and Applications, Volume 468 (2018) no. 2, p. 1098 | DOI:10.1016/j.jmaa.2018.08.056
- Approximation of o-minimal maps satisfying a Lipschitz condition, Annals of Pure and Applied Logic, Volume 165 (2014) no. 3, p. 787 | DOI:10.1016/j.apal.2013.10.003
- Construction of O-minimal Structures from Quasianalytic Classes, Lecture Notes on O-Minimal Structures and Real Analytic Geometry, Volume 62 (2012), p. 71 | DOI:10.1007/978-1-4614-4042-0_3
- A generic condition implying o-minimality for restricted C ∞ -functions, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 19 (2011) no. 3-4, p. 479 | DOI:10.5802/afst.1252
- On the points realizing the distance to a definable set, Journal of Mathematical Analysis and Applications, Volume 378 (2011) no. 2, p. 592 | DOI:10.1016/j.jmaa.2011.02.002
Cité par 10 documents. Sources : Crossref