An o-minimal structure which does not admit C cellular decomposition
[Une structure o-minimale sans décomposition cellulaire lisse]
Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 543-562.

Nous présentons un exemple de structure o-minimale n’admettant pas la propriété de décomposition cellulaire C. Pour ce faire, nous construisons une fonction H dont le germe en 0 admet un représentant Ck pour tout entier k, mais n’admet aucun représentant C. Une condition de transcendance sur les coefficients de la série de Taylor de H assure alors la quasi-analyticité de certaines algèbres différentielles 𝒜n(H) engendrées par H. La o-minimalité de la structure engendrée par H est enfin déduite de cette quasi-analyticité.

We present an example of an o-minimal structure which does not admit C cellular decomposition. To this end, we construct a function H whose germ at the origin admits a Ck representative for each integer k, but no C representative. A number theoretic condition on the coefficients of the Taylor series of H then insures the quasianalyticity of some differential algebras 𝒜n(H) induced by H. The o-minimality of the structure generated by H is deduced from this quasianalyticity property.

DOI : 10.5802/aif.2439
Classification : 03C64 57-99 26A27 57R45
Keywords: o-minimal, smooth cell decomposition
Mot clés : o-minimal, decomposition cellulaire lisse
Le Gal, Olivier 1 ; Rolin, Jean-Philippe 2

1 University of Toronto Department of Mathematics Toronto, Ontario M5S 2E4 (Canada)
2 Université de Bourgogne IMB, UFR Sciences et Techniques 9, Avenue Alain Savary BP 47870 21078 Dijon (France)
@article{AIF_2009__59_2_543_0,
     author = {Le Gal, Olivier and Rolin, Jean-Philippe},
     title = {An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition},
     journal = {Annales de l'Institut Fourier},
     pages = {543--562},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     doi = {10.5802/aif.2439},
     zbl = {1193.03065},
     mrnumber = {2521427},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2439/}
}
TY  - JOUR
AU  - Le Gal, Olivier
AU  - Rolin, Jean-Philippe
TI  - An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition
JO  - Annales de l'Institut Fourier
PY  - 2009
SP  - 543
EP  - 562
VL  - 59
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2439/
DO  - 10.5802/aif.2439
LA  - en
ID  - AIF_2009__59_2_543_0
ER  - 
%0 Journal Article
%A Le Gal, Olivier
%A Rolin, Jean-Philippe
%T An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition
%J Annales de l'Institut Fourier
%D 2009
%P 543-562
%V 59
%N 2
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2439/
%R 10.5802/aif.2439
%G en
%F AIF_2009__59_2_543_0
Le Gal, Olivier; Rolin, Jean-Philippe. An o-minimal structure which does not admit $C^{\infty }$ cellular decomposition. Annales de l'Institut Fourier, Tome 59 (2009) no. 2, pp. 543-562. doi : 10.5802/aif.2439. https://www.numdam.org/articles/10.5802/aif.2439/

[1] Bierstone, Edward; Milman, Pierre D. Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988) no. 67, pp. 5-42 | DOI | Numdam | MR | Zbl

[2] Denef, J.; van den Dries, L. p-adic and real subanalytic sets, Ann. of Math. (2), Volume 128 (1988) no. 1, pp. 79-138 | DOI | MR | Zbl

[3] van den Dries, Lou Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[4] van den Dries, Lou; Speissegger, Patrick The real field with convergent generalized power series, Trans. Amer. Math. Soc., Volume 350 (1998) no. 11, pp. 4377-4421 | DOI | MR | Zbl

[5] van den Dries, Lou; Speissegger, Patrick The field of reals with multisummable series and the exponential function, Proc. London Math. Soc. (3), Volume 81 (2000) no. 3, pp. 513-565 | DOI | MR | Zbl

[6] Gabrielov, Andrei Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., Volume 125 (1996) no. 1, pp. 1-12 | DOI | MR | Zbl

[7] Malgrange, Bernard Idéaux de fonctions différentiables et division des distributions, Distributions, Ed. Éc. Polytech., Palaiseau, 2003, pp. 1-21 With an Appendix: “Stanisław Łojasiewicz (1926–2002)” | MR

[8] Mandelbrojt, S. Sur les fonctions indéfiniment dérivables, Acta Math., Volume 72 (1940), pp. 15-29 | DOI | MR

[9] Rolin, J.-P.; Speissegger, P.; Wilkie, A. J. Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc., Volume 16 (2003) no. 4, p. 751-777 (electronic) | DOI | MR | Zbl

[10] Wilkie, A. J. A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.), Volume 5 (1999) no. 4, pp. 397-421 | DOI | MR | Zbl

  • Sánchez, Fernando Sanz Half a Century with the Problem of the Gradient of an Analytic Function, Handbook of Geometry and Topology of Singularities V: Foliations (2024), p. 335 | DOI:10.1007/978-3-031-52481-3_7
  • Abu Saleh, Hind; Peterzil, Ya’acov Additive reducts of real closed fields and strongly bounded structures, Model Theory, Volume 2 (2023) no. 2, p. 381 | DOI:10.2140/mt.2023.2.381
  • Valette, Anna; Valette, Guillaume Approximations in globally subanalytic and Denjoy-Carleman classes, Advances in Mathematics, Volume 385 (2021), p. 107764 | DOI:10.1016/j.aim.2021.107764
  • NGUYEN, NHAN; TRIVEDI, SAURABH Transversality of smooth definable maps in O-minimal structures, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 168 (2020) no. 3, p. 519 | DOI:10.1017/s0305004118000920
  • Jones, Gareth; Kirby, Jonathan; Le Gal, Olivier; Servi, Tamara On Local definability of holomorphic functions, The Quarterly Journal of Mathematics (2019) | DOI:10.1093/qmath/haz015
  • Trivedi, Saurabh Cohomology of flat currents on definable pseudomanifolds, Journal of Mathematical Analysis and Applications, Volume 468 (2018) no. 2, p. 1098 | DOI:10.1016/j.jmaa.2018.08.056
  • Fischer, Andreas Approximation of o-minimal maps satisfying a Lipschitz condition, Annals of Pure and Applied Logic, Volume 165 (2014) no. 3, p. 787 | DOI:10.1016/j.apal.2013.10.003
  • Rolin, Jean-Philippe Construction of O-minimal Structures from Quasianalytic Classes, Lecture Notes on O-Minimal Structures and Real Analytic Geometry, Volume 62 (2012), p. 71 | DOI:10.1007/978-1-4614-4042-0_3
  • Le Gal, Olivier A generic condition implying o-minimality for restricted C ∞ -functions, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 19 (2011) no. 3-4, p. 479 | DOI:10.5802/afst.1252
  • Denkowski, Maciej P. On the points realizing the distance to a definable set, Journal of Mathematical Analysis and Applications, Volume 378 (2011) no. 2, p. 592 | DOI:10.1016/j.jmaa.2011.02.002

Cité par 10 documents. Sources : Crossref