Considérons l’action hamiltonienne d’un groupe de Lie compact
Le but de ce travail est l’étude de certaines propriétés fonctorielles de l’application
Let
The aim of this article is to study the functorial properties of the assignment
Keywords: Geometric quantization, moment map, symplectic reduction, index, transversally elliptic
Mot clés : quantification géométrique, application moment, réduction symplectique, indice, transversalement elliptique
@article{AIF_2009__59_1_199_0, author = {Paradan, Paul-\'Emile}, title = {Formal geometric quantization}, journal = {Annales de l'Institut Fourier}, pages = {199--238}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {1}, year = {2009}, doi = {10.5802/aif.2429}, zbl = {1163.53056}, mrnumber = {2514864}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2429/} }
TY - JOUR AU - Paradan, Paul-Émile TI - Formal geometric quantization JO - Annales de l'Institut Fourier PY - 2009 SP - 199 EP - 238 VL - 59 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2429/ DO - 10.5802/aif.2429 LA - en ID - AIF_2009__59_1_199_0 ER -
Paradan, Paul-Émile. Formal geometric quantization. Annales de l'Institut Fourier, Tome 59 (2009) no. 1, pp. 199-238. doi : 10.5802/aif.2429. https://www.numdam.org/articles/10.5802/aif.2429/
[1] Convexity and commuting Hamiltonians, Bull. London Math. Soc., Volume 14 (1982) no. 1, pp. 1-15 | DOI | MR | Zbl
[2] The index of elliptic operators. II, Ann. of Math. (2), Volume 87 (1968), pp. 531-545 | DOI | MR | Zbl
[3] The index of elliptic operators. I, Ann. of Math. (2), Volume 87 (1968), pp. 484-530 | DOI | MR | Zbl
[4] The index of elliptic operators. III, Ann. of Math. (2), Volume 87 (1968), pp. 546-604 | DOI | MR | Zbl
[5] The index of elliptic operators. IV, Ann. of Math. (2), Volume 93 (1971), pp. 139-149 | DOI | MR | Zbl
[6] Elliptic operators and compact groups, Lecture Notes in Mathematics, Vol. 401, Springer-Verlag, Berlin, 1974 | MR | Zbl
[7] Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 298, Springer-Verlag, Berlin, 1992 | MR | Zbl
[8] The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math., Volume 124 (1996) no. 1-3, pp. 11-49 | DOI | MR | Zbl
[9] L’indice équivariant des opérateurs transversalement elliptiques, Invent. Math., Volume 124 (1996) no. 1-3, pp. 51-101 | DOI | MR | Zbl
[10] Variétés sphériques, Opérations hamiltoniennes et opération de groupes algébriques, Notes de la session de S.M.F., Grenoble, 1997, pp. 1-60
[11] The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 137-174 | DOI | MR | Zbl
[12] Décomposition simpliciale d’un réseau, invariante par un groupe fini d’automorphismes, C. R. Acad. Sci. Paris Sér. A-B, Volume 288 (1979) no. 2, p. A137-A139 | MR | Zbl
[13] Compactification équivariante d’un tore (d’après Brylinski et Künnemann), Expo. Math., Volume 23 (2005) no. 2, pp. 161-170 | MR | Zbl
[14] Complete symmetric varieties, Invariant theory (Montecatini, 1982) (Lecture Notes in Math.), Volume 996, Springer, Berlin, 1983, pp. 1-44 | Zbl
[15] Complete symmetric varieties. II. Intersection theory, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Adv. Stud. Pure Math.), Volume 6, North-Holland, Amsterdam, 1985, pp. 481-513 | Zbl
[16] The heat kernel Lefschetz fixed point formula for the spin-
[17] Geometric quantization and multiplicities of group representations, Invent. Math., Volume 67 (1982) no. 3, pp. 515-538 | DOI | MR | Zbl
[18] Localization and the quantization conjecture, Topology, Volume 36 (1997) no. 3, pp. 647-693 | DOI | MR | Zbl
[19] The length of vectors in representation spaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) (Lecture Notes in Math.), Volume 732, Springer, Berlin, 1979, pp. 233-243 | MR | Zbl
[20] Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, 31, Princeton University Press, Princeton, NJ, 1984 | MR | Zbl
[21] Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, p. 87-208. Lecture Notes in Math., Vol. 170 | MR | Zbl
[22] Symplectic cuts, Math. Res. Lett., Volume 2 (1995) no. 3, pp. 247-258 | MR | Zbl
[23] Nonabelian convexity by symplectic cuts, Topology, Volume 37 (1998) no. 2, pp. 245-259 | DOI | MR | Zbl
[24] On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc., Volume 9 (1996) no. 2, pp. 373-389 | DOI | MR | Zbl
[25] Symplectic surgery and the
[26] Singular reduction and quantization, Topology, Volume 38 (1999) no. 4, pp. 699-762 | DOI | MR | Zbl
[27] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34, Springer-Verlag, Berlin, 1994 | MR | Zbl
[28] Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988 (An introduction to the theory of toric varieties, Translated from the Japanese) | MR | Zbl
[29] Localization of the Riemann-Roch character, J. Funct. Anal., Volume 187 (2001) no. 2, pp. 442-509 | DOI | MR | Zbl
[30] Symplectic reduction and Riemann-Roch formulas for multiplicities, Bull. Amer. Math. Soc. (N.S.), Volume 33 (1996) no. 3, pp. 327-338 | DOI | MR | Zbl
[31] An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math., Volume 132 (1998) no. 2, pp. 229-259 | DOI | MR | Zbl
[32] Multiplicities formula for geometric quantization. I, II, Duke Math. J., Volume 82 (1996) no. 1, p. 143-179, 181–194 | DOI | MR | Zbl
[33] Quantification géométrique et réduction symplectique, Astérisque (2002) no. 282, pp. 249-278 (Séminaire Bourbaki, Vol. 2000/2001, Exp. No. 888, viii) | Numdam | MR | Zbl
[34] Non-abelian symplectic cuts and the geometric quantization of noncompact manifolds, Lett. Math. Phys., Volume 56 (2001) no. 1, pp. 31-40 EuroConférence Moshé Flato 2000, Part I (Dijon) | DOI | MR | Zbl
[35] Two-dimensional gauge theories revisited, J. Geom. Phys., Volume 9 (1992) no. 4, pp. 303-368 | DOI | MR | Zbl
[36] The classification of transversal multiplicity-free group actions, Ann. Global Anal. Geom., Volume 14 (1996) no. 1, pp. 3-42 | DOI | MR | Zbl
Cité par Sources :