Etant donné un objet amas-basculant
Starting from an arbitrary cluster-tilting object
Keywords: Calabi–Yau triangulated category, cluster algebra, cluster category, cluster-tilting object
Mot clés : catégorie triangulée 2-Calabi–Yau, algèbre amassée, catégorie amassée, objet amas-basculant
@article{AIF_2008__58_6_2221_0, author = {Palu, Yann}, title = {Cluster characters for {2-Calabi{\textendash}Yau} triangulated categories}, journal = {Annales de l'Institut Fourier}, pages = {2221--2248}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2412}, zbl = {1154.16008}, mrnumber = {2473635}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2412/} }
TY - JOUR AU - Palu, Yann TI - Cluster characters for 2-Calabi–Yau triangulated categories JO - Annales de l'Institut Fourier PY - 2008 SP - 2221 EP - 2248 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2412/ DO - 10.5802/aif.2412 LA - en ID - AIF_2008__58_6_2221_0 ER -
%0 Journal Article %A Palu, Yann %T Cluster characters for 2-Calabi–Yau triangulated categories %J Annales de l'Institut Fourier %D 2008 %P 2221-2248 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2412/ %R 10.5802/aif.2412 %G en %F AIF_2008__58_6_2221_0
Palu, Yann. Cluster characters for 2-Calabi–Yau triangulated categories. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2221-2248. doi : 10.5802/aif.2412. https://www.numdam.org/articles/10.5802/aif.2412/
[1] Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., Volume 126 (2005) no. 1, pp. 1-52 | DOI | MR | Zbl
[2] Appendix to Clusters and seeds in acyclic cluster algebras (preprint arXiv: math.RT/0510359)
[3] Cluster structures for 2-Calabi–Yau categories and unipotent groups (preprint arXiv: math.RT/0701557)
[4] Tilting theory and cluster combinatorics, Adv. Math., Volume 204 (2006) no. 2, pp. 572-618 | DOI | MR | Zbl
[5] Cluster mutation via quiver representations (preprint arXiv: math.RT/0412077)
[6] Cluster-tilted algebras, Trans. Amer. Math. Soc., Volume 359 (2007) no. 1, p. 323-332 (electronic) | DOI | MR | Zbl
[7] Quivers with relations arising from clusters (
[8] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Volume 81 (2006) no. 3, pp. 595-616 | DOI | MR | Zbl
[9] From triangulated categories to cluster algebras (preprint arXiv: math.RT/0506018) | Zbl
[10] From triangulated categories to cluster algebras II (preprint arXiv: math.RT/0510251)
[11] Cluster algebras IV: Coefficients (preprint arXiv: math.RA/0602259) | Zbl
[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 497-529 (electronic) | DOI | MR | Zbl
[13] Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl
[14] Partial flag varieties and preprojective algebras (preprint arXiv: math.RT/0609138)
[15] Semicanonical bases and preprojective algebras II: A multiplication formula (preprint arXiv: math.RT/0509483) | Zbl
[16] Semicanonical bases and preprojective algebras, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 2, pp. 193-253 | Numdam | MR | Zbl
[17] Rigid modules over preprojective algebras, Invent. Math., Volume 165 (2006) no. 3, pp. 589-632 | DOI | MR
[18] Fomin-Zelevinsky mutation and tilting modules over Calabi–Yau algebras (preprint arXiv: math.RT/0605136)
[19] Mutations in triangulated categories and rigid Cohen–Macaulay modules (preprint arXiv: math.RT/0607736) | Zbl
[20] On triangulated orbit categories, Doc. Math., Volume 10 (2005), p. 551-581 (electronic) | MR | Zbl
[21] The connection between May’s axioms for a triangulated tensor product and Happel’s description of the derived category of the quiver
[22] Acyclic Calabi-Yau categories (preprint arXiv: math.RT/0610594)
[23] Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math., Volume 211 (2007) no. 1, pp. 123-151 | DOI | MR | Zbl
[24] From triangulated categories to abelian categories–cluster tilting in a general framework (preprint arXiv: math.RT/0605100) | Zbl
[25] Semicanonical bases arising from enveloping algebras, Adv. Math., Volume 151 (2000) no. 2, pp. 129-139 | DOI | MR | Zbl
[26] Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., Volume 355 (2003) no. 10, p. 4171-4186 (electronic) | DOI | MR | Zbl
[27] On the structure of Calabi–Yau categories with a cluster tilting subcategory (preprint arXiv: math.RT/0607394) | Zbl
Cité par Sources :