Nous décrivons les repères mobiles et les invariants différentiels pour les courbes dans deux variétés paraboliques
In this paper we describe moving frames and differential invariants for curves in two different
Keywords: Invariant evolutions of curves, flat homogeneous spaces, Poisson brackets, differential invariants, projective invariants, completely integrable PDEs, moving frames.
Mot clés : repères mobiles, invariants différentiels de type projectif, équations de type KdV, structures Hamiltoniennes de type KdV.
@article{AIF_2008__58_4_1295_0, author = {Mar{\'\i}~Beffa, Gloria}, title = {Projective-type differential invariants and geometric curve evolutions of {KdV-type} in flat homogeneous manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1295--1335}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {4}, year = {2008}, doi = {10.5802/aif.2385}, mrnumber = {2427961}, zbl = {1192.37099}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2385/} }
TY - JOUR AU - Marí Beffa, Gloria TI - Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds JO - Annales de l'Institut Fourier PY - 2008 SP - 1295 EP - 1335 VL - 58 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2385/ DO - 10.5802/aif.2385 LA - en ID - AIF_2008__58_4_1295_0 ER -
%0 Journal Article %A Marí Beffa, Gloria %T Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds %J Annales de l'Institut Fourier %D 2008 %P 1295-1335 %V 58 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2385/ %R 10.5802/aif.2385 %G en %F AIF_2008__58_4_1295_0
Marí Beffa, Gloria. Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds. Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1295-1335. doi : 10.5802/aif.2385. https://www.numdam.org/articles/10.5802/aif.2385/
[1] Recent developments in integrable curve dynamics, Geometric approaches to differential equations (Canberra 1995) (2000), pp. 56-99 (Cambridge University Press, Cambridge) | MR | Zbl
[2] La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés, Exposés de Géométrie 5, Hermann, Paris, 1935 | Zbl
[3] Moving coframes. I. A practical algorithm, Acta Appl. Math. (1997), pp. 99-136 | MR | Zbl
[4] Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. (1999), pp. 127-208 | DOI | MR | Zbl
[5] The Conformal Theory or Curves, Transactions of the AMS, Volume 51 (1942), pp. 435-568 | MR | Zbl
[6] The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Mathematical Journal, Volume 45 (1978) no. 4, pp. 735-779 | DOI | MR | Zbl
[7] On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in Differential Geometry, Duke Mathematical Journal, Volume 41 (1974), pp. 775-814 | DOI | Zbl
[8] A soliton on a vortex filament, J. Fluid Mechanics, Volume 51 (1972), pp. 477-485 | DOI | Zbl
[9] Generation properties of differential invariants in the moving frame methods (in preparation)
[10] Transformation Groups in Differential Geometry, Classics in Mathematics, Springer–Verlag, New York, 1972 | MR | Zbl
[11] On filtered Lie Algebras and Geometric Structures I, Journal of Mathematics and Mechanics, Volume 13 (1964) no. 5, pp. 875-907 | MR | Zbl
[12] Geometric Poisson brackets in flat semisimple homogenous spaces (accepted for publication in the Asian Journal of Mathematics.)
[13] Poisson brackets associated to the conformal geometry of curves, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 2799-2827 | DOI | MR | Zbl
[14] Poisson Geometry of differential invariants of curves in nonsemisimple homogeneous spaces, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 779-791 | DOI | MR | Zbl
[15] On completely integrable geometric evolutions of curves of Lagrangian planes, Proceedings of the Royal academy of Edinburg, Volume 137A (2007), pp. 111-131 | MR | Zbl
[16] Geometry associated with semisimple flat homogeneous spaces, Transactions of the AMS, Volume 152 (1970), pp. 159-193 | DOI | MR | Zbl
[17] Equivalence, Invariance and Symmetry, Cambridge University Press, Cambridge, UK, 1995 | MR | Zbl
[18] Moving frames and singularities of prolonged group actions, Selecta Math, Volume 6 (2000), pp. 41-77 | DOI | MR | Zbl
[19] Classification of one-component systems on associative algebras, Proc. London Math. Soc., Volume 81 (2000), pp. 566-586 | DOI | MR | Zbl
[20] Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl
[21] Lagrange Schwarzian derivative and symplectic Sturm theory, Ann. de la Fac. des Sciences de Toulouse, Volume 6 (1993) no. 2, pp. 73-96 | DOI | Numdam | MR | Zbl
[22] Projective differential geometry, old and new, Cambridge tracts in Mathematics, Cambridge University press, 2005 | MR | Zbl
[23] Normal matrices over an arbitrary field of characteristic zero, American Journal of Mathematics, Volume 61 (1939) no. 2, pp. 335-356 | DOI | MR
- Geometrical correspondence of the Miura transformation induced from affine Kac–Moody algebras, Studies in Applied Mathematics, Volume 152 (2024) no. 1, p. 174 | DOI:10.1111/sapm.12641
- Invariants of objects and their images under surjective maps, Lobachevskii Journal of Mathematics, Volume 36 (2015) no. 3, p. 260 | DOI:10.1134/s1995080215030063
- Algebraic and Differential Invariants, Foundations of Computational Mathematics, Budapest 2011 (2012), p. 165 | DOI:10.1017/cbo9781139095402.009
- A completely integrable flow of star-shaped curves on the light cone in Lorentzian
, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 44, p. 445203 | DOI:10.1088/1751-8113/44/44/445203 - Lectures on Moving Frames, Symmetries and Integrability of Difference Equations (2011), p. 207 | DOI:10.1017/cbo9780511997136.010
- Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds, Pacific Journal of Mathematics, Volume 247 (2010) no. 1, p. 163 | DOI:10.2140/pjm.2010.247.163
- , Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (2010), p. 1 | DOI:10.1145/1837934.1837936
- Hamiltonian evolution of curves in classical affine geometries, Physica D: Nonlinear Phenomena, Volume 238 (2009) no. 1, p. 100 | DOI:10.1016/j.physd.2008.08.009
Cité par 8 documents. Sources : Crossref