Nous montrons que l’équation de Camassa–Holm périodique
We show that the periodic Camassa–Holm equation
Keywords: Camassa–Holm equation, periodic solution
Mot clés : équation de Camassa–Holm, solutions périodiques
@article{AIF_2008__58_3_945_0, author = {Holden, Helge and Raynaud, Xavier}, title = {Periodic conservative solutions of the {Camassa{\textendash}Holm} equation}, journal = {Annales de l'Institut Fourier}, pages = {945--988}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2375}, zbl = {1158.35079}, mrnumber = {2427516}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2375/} }
TY - JOUR AU - Holden, Helge AU - Raynaud, Xavier TI - Periodic conservative solutions of the Camassa–Holm equation JO - Annales de l'Institut Fourier PY - 2008 SP - 945 EP - 988 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2375/ DO - 10.5802/aif.2375 LA - en ID - AIF_2008__58_3_945_0 ER -
%0 Journal Article %A Holden, Helge %A Raynaud, Xavier %T Periodic conservative solutions of the Camassa–Holm equation %J Annales de l'Institut Fourier %D 2008 %P 945-988 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2375/ %R 10.5802/aif.2375 %G en %F AIF_2008__58_3_945_0
Holden, Helge; Raynaud, Xavier. Periodic conservative solutions of the Camassa–Holm equation. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 945-988. doi : 10.5802/aif.2375. https://www.numdam.org/articles/10.5802/aif.2375/
[1] Manifolds, Tensor Analysis, and Applications, Springer-Verlag, New York, 1988 (2nd ed) | MR | Zbl
[2] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000 | MR | Zbl
[3] Topological Methods in Hydrodynamics, Springer-Verlag, New York, 1998 | MR | Zbl
[4] Multi-peakons and a theorem of Stieltjes, Inverse Problems, Volume 15 (1999), p. L1-L4 | DOI | MR | Zbl
[5] Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., Volume 183 (2007), pp. 215-239 | DOI | MR | Zbl
[6] An optimal transportation metric for solutions of the Camassa–Holm equation, Methods Appl. Anal., Volume 12 (2005), pp. 191-220 | MR
[7] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993), pp. 1661-1664 | DOI | MR | Zbl
[8] A new integrable shallow water equation, Adv. Appl. Mech., Volume 31 (1994), pp. 1-33 | DOI | Zbl
[9] Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., Volume 37 (2005), pp. 1044-1069 | DOI | MR | Zbl
[10] Well-posedness for a parabolic-elliptic system, Discrete Cont. Dynam. Systems, Volume 13 (2005), pp. 659-682 | DOI | MR | Zbl
[11] On the Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations, Volume 141 (1997), pp. 218-235 | DOI | MR | Zbl
[12] On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal., Volume 155 (1998), pp. 352-363 | DOI | MR | Zbl
[13] Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier, Grenoble, Volume 50 (2000), pp. 321-362 | DOI | Numdam | MR | Zbl
[14] Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., Volume 51 (1998), pp. 475-504 | DOI | MR | Zbl
[15] On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., Volume 233 (2000), pp. 75-91 | DOI | MR | Zbl
[16] On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, Volume 35 (2002), p. R51-R79 | DOI | MR | Zbl
[17] Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., Volume 78 (2003), pp. 787-804 | DOI | MR | Zbl
[18] Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci., Volume 16 (2006), pp. 109-122 | DOI | MR
[19] A shallow water equation on the circle, Comm. Pure Appl. Math., Volume 52 (1999), pp. 949-982 | DOI | MR | Zbl
[20] Global weak solutions for a shallow water equation, Comm. Math. Phys., Volume 211 (2000), pp. 45-61 | DOI | MR | Zbl
[21] Stability of peakons, Comm. Pure Appl. Math., Volume 53 (2000), pp. 603-610 | DOI | MR | Zbl
[22] Real Analysis, John Wiley & Sons Inc., New York, 1999 (2nd ed.) | MR | Zbl
[23] Conservative solution of the Camassa–Holm equation on the real line, 2005 (3, arXiv:math.AP/0511549)
[24] Convergent difference schemes for the Hunter–Saxton equation, Math. Comp., Volume 76 (2007), pp. 699-744 | DOI | MR | Zbl
[25] Convergence of a finite difference scheme for the Camassa–Holm equation, SIAM J. Numer. Anal., Volume 44 (2006), pp. 1655-1680 | DOI | MR | Zbl
[26] A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, Discrete Contin. Dyn. Syst., Volume 14 (2006), pp. 505-523 | MR | Zbl
[27] Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differ. Equ., Volume 4 (2007), pp. 39-64 | DOI | MR | Zbl
[28] Global conservative solutions of the Camassa–Holm equation — a Lagrangian point of view, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1511-1549 | DOI | MR
[29] Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations, Volume 233 (2007), pp. 448-484 | DOI | MR | Zbl
[30] Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech., Volume 455 (2002), pp. 63-82 | DOI | MR | Zbl
[31] A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys., Volume 24 (1998), pp. 203-208 | DOI | Zbl
[32] Classical solutions of the periodic Camassa–Holm equation., Geom. Funct. Anal., Volume 12 (2002), pp. 1080-1104 | DOI
[33] Functional Analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995 Reprint of the sixth (1980) edition | MR
Cité par Sources :