Nous prouvons un résultat de finitude pour l’aire systolique des groupes. Précisément, nous montrons qu’il n’existe qu’un nombre fini de facteurs non-libres dans les groupes fondamentaux des
We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many possible unfree factors of fundamental groups of
Keywords: Systole, systolic area, systolic ratio,
Mot clés : systole, aire systolique, rapport systolique,
@article{AIF_2008__58_3_777_0, author = {Rudyak, Yuli B. and Sabourau, St\'ephane}, title = {Systolic invariants of groups and $2$-complexes via {Grushko} decomposition}, journal = {Annales de l'Institut Fourier}, pages = {777--800}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2369}, zbl = {1142.53035}, mrnumber = {2427510}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2369/} }
TY - JOUR AU - Rudyak, Yuli B. AU - Sabourau, Stéphane TI - Systolic invariants of groups and $2$-complexes via Grushko decomposition JO - Annales de l'Institut Fourier PY - 2008 SP - 777 EP - 800 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2369/ DO - 10.5802/aif.2369 LA - en ID - AIF_2008__58_3_777_0 ER -
%0 Journal Article %A Rudyak, Yuli B. %A Sabourau, Stéphane %T Systolic invariants of groups and $2$-complexes via Grushko decomposition %J Annales de l'Institut Fourier %D 2008 %P 777-800 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2369/ %R 10.5802/aif.2369 %G en %F AIF_2008__58_3_777_0
Rudyak, Yuli B.; Sabourau, Stéphane. Systolic invariants of groups and $2$-complexes via Grushko decomposition. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 777-800. doi : 10.5802/aif.2369. https://www.numdam.org/articles/10.5802/aif.2369/
[1] Intrinsic geometry of surfaces, Translations of Mathematical Monographs, 15, American Mathematical Society, Providence, R.I., 1967 | MR | Zbl
[2] Sur des problèmes de la géométrie systolique, Sémin. Théor. Spectr. Géom., Volume 22 (2004), pp. 71-82 | EuDML | Numdam | MR | Zbl
[3] Filling area conjecture and ovalless real hyperelliptic surfaces, Geom. Funct. Anal., Volume 15 (2005), pp. 577-597 | DOI | MR | Zbl
[4] Une remarque sur la géométrie systolique de la bouteille de Klein, Arch. Math., Volume 87 (2006) no. 1, pp. 72-74 | DOI | MR | Zbl
[5] Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 36, Springer-Verlag, 1998 no. 3 | MR | Zbl
[6] Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, 285, Springer-Verlag, Berlin, 1988 | MR | Zbl
[7] On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane, Invent. Math., Volume 117 (1994) no. 1, pp. 27-56 | DOI | EuDML | MR | Zbl
[8] Universal volume bounds in Riemannian manifolds, Surveys in Differential Geometry, Volume 8, S.T. Yau, 2002, pp. 109-137 Lectures on Geometry and Topology held in honor of Calabi, Lawson, Siu, and Uhlenbeck at Harvard University, May 3–5, 2002, edited by S.T. Yau (Somerville, MA: International Press, 2003). See arXiv:math.DG/0302248 | MR | Zbl
[9] Décomposition d’un groupe en produit libre ou somme amalgamée, J. Reine Angew. Math., Volume 470 (1996), pp. 153-180 | DOI | EuDML | Zbl
[10] Geometric measure theory, Grundlehren der mathematischen Wissenschaften, Volume 153, Springer–Verlag, Berlin, 1969 | MR | Zbl
[11] Filling Riemannian manifolds, J. Diff. Geom., Volume 18 (1983), pp. 1-147 | MR | Zbl
[12] Systoles and intersystolic inequalities, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), 291–362, Sémin. Congr., 1, Soc. Math. France, Paris, 1996 | MR | Zbl
[13] Metric structures for Riemannian and non-Riemannian spaces, Progr. in Mathematics, 152, Birkhäuser, Boston, 1999 | MR | Zbl
[14] Some lower bounds for the area of surfaces, Invent. Math., Volume 65 (1982), pp. 485-490 | DOI | EuDML | MR | Zbl
[15] Delzant’s T-invariant, Kolmogorov complexity and one-relator groups, Comment. Math. Helv., Volume 80 (2005) no. 4, pp. 911-933 | DOI | Zbl
[16] Systolic geometry and topology. With an appendix by Jake P, Math. Surveys Monographs, 137, Amer. Math. Soc., 2007 | MR | Zbl
[17] Systoles of 2-complexes, Reeb graph, and Grushko decomposition, Int. Math. Res. Not., 2006 (Art. ID 54936, 30 pp. See arXiv:math.DG/0602009) | MR | Zbl
[18] Entropy of systolically extremal surfaces and asymptotic bounds, Ergodic Theory and Dynamical Systems, Volume 25 (2005), pp. 1209-1220 (See arXiv:math.DG/0410312) | DOI | MR | Zbl
[19] Hyperelliptic surfaces are Loewner, Proc. Amer. Math. Soc., Volume 134 (2006) no. 4, pp. 1189-1195 | DOI | MR | Zbl
[20] An optimal systolic inequality for CAT(0) metrics in genus two, Pacific J. Math., Volume 227 (2006) no. 1, pp. 95-107 (See arXiv:math.DG/0501017) | DOI | MR | Zbl
[21] Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups, J. Diff. Geom., Volume 76 (2007) no. 3, pp. 399-422 (Available at arXiv:math.DG/0505007) | MR | Zbl
[22] Discrete groups, Iwanami Series in Modern Mathematics, American Mathematical Society, Providence, RI, 2002 (Translated from the 1998 Japanese original by the author. Translations of Mathematical Monographs, 207.) | MR | Zbl
[23] Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math., Volume 2 (1952), pp. 55-71 | MR | Zbl
[24] Asymptotic bounds for separating systoles on surfaces, Comment. Math. Helv. (to appear) | MR | Zbl
[25] A topological proof of Grushko’s theorem on free products, Math. Z., Volume 90 (1965), pp. 1-8 | DOI | EuDML | Zbl
Cité par Sources :