Le produit d’une fonction à oscillation moyenne bornée avec une fonction de l’espace de Hardy
The point-wise product of a function of bounded mean oscillation with a function of the Hardy space
Keywords: Hardy spaces, bounded mean oscillation, Jacobian lemma, Jacobian equation, Hardy-Orlicz spaces, div-curl lemma, factorization in Hardy spaces, weak Jacobian.
Mot clés : Espaces de Hardy, fonctions à oscillation moyenne bornée, lemme du Jacobien, équation du Jacobien, espaces de hardy-Orlicz, lemme div-curl, factorisation dans les classes de hardy, Jacobien faible.
@article{AIF_2007__57_5_1405_0, author = {Bonami, Aline and Iwaniec, Tadeusz and Jones, Peter and Zinsmeister, Michel}, title = {On the {Product} of {Functions} in {\protect\emph{BMO}} and {\protect\emph{H}}$^\text{1}$}, journal = {Annales de l'Institut Fourier}, pages = {1405--1439}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {5}, year = {2007}, doi = {10.5802/aif.2299}, zbl = {1132.42010}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2299/} }
TY - JOUR AU - Bonami, Aline AU - Iwaniec, Tadeusz AU - Jones, Peter AU - Zinsmeister, Michel TI - On the Product of Functions in BMO and H$^\text{1}$ JO - Annales de l'Institut Fourier PY - 2007 SP - 1405 EP - 1439 VL - 57 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2299/ DO - 10.5802/aif.2299 LA - en ID - AIF_2007__57_5_1405_0 ER -
%0 Journal Article %A Bonami, Aline %A Iwaniec, Tadeusz %A Jones, Peter %A Zinsmeister, Michel %T On the Product of Functions in BMO and H$^\text{1}$ %J Annales de l'Institut Fourier %D 2007 %P 1405-1439 %V 57 %N 5 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2299/ %R 10.5802/aif.2299 %G en %F AIF_2007__57_5_1405_0
Bonami, Aline; Iwaniec, Tadeusz; Jones, Peter; Zinsmeister, Michel. On the Product of Functions in BMO and H$^\text{1}$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1405-1439. doi : 10.5802/aif.2299. https://www.numdam.org/articles/10.5802/aif.2299/
[1] Mappings of
[2] Teichmüller spaces and BMOA, Math. Ann., Volume 289 (1991), pp. 613-625 | DOI | MR | Zbl
[3] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 703-726 | MR | Zbl
[4] Remarks on Chacon’s Biting Lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663 | Zbl
[5] Lower semicontinuity of multiple integrals and the biting lemma, Proc. Royal Soc. Edinburgh. Sec. A, Volume 114 (1990), pp. 367-379 | DOI | MR | Zbl
[6] Balayage of Carleson measures and Hankel operators on generalized Hardy spaces, Math. Nachr., Volume 193 (1991), pp. 237-245 | DOI | MR | Zbl
[7] Continuity and compactness of measures, Advances Math., Volume 107 (1980), pp. 16-26 | DOI | MR | Zbl
[8] A
[9]
[10] Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286 | MR | Zbl
[11] Another characterization of
[12] Factorization theorems for Hardy spaces in several variables, Ann. of Math., Volume 103 (1976), pp. 611-635 | DOI | MR | Zbl
[13] Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 569-645 | DOI | MR | Zbl
[14] Local
[15] Nonhomogeneous
[16] Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics, 74, American Mathematical Society, Providence, 1990 | MR | Zbl
[17] Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, Journ. Amer. Math. Soc., Volume 7 (1994), pp. 199-219 | DOI | MR | Zbl
[18] Characterization of bounded mean oscillations, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 587-588 | DOI | MR | Zbl
[19]
[20] Bounded Analytic Functions, Pure and Applied Mathematics, 96, Academic Press, New York, 1981 | MR | Zbl
[21] Estimates of Jacobians by subdeterminants, Journ. of Geometric Anal., Volume 12 (2002), pp. 223-254 | MR | Zbl
[22] Remarks on multipliers for
[23] On multipliers for
[24] Inverting the
[25] Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math., Volume 70 (1991), pp. 203-218 | DOI | MR | Zbl
[26] Mappings of finite distortion:
[27] Geometric Function Theory and Nonlinear Analysis, Oxford University Press, New-York, 2001 | Zbl
[28]
[29] On the integrability of the Jacobian under minimal hypothesis, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 129-143 | DOI | MR | Zbl
[30] Weak minima of variational integrals, J. Reine Angew. Math., Volume 454 (1994), pp. 143-161 | DOI | MR | Zbl
[31] Quasiharmonic fields, Ann. I.H. Poincaré Anal. Non Lin., Volume 18 (2001), pp. 519-572 | DOI | Numdam | MR | Zbl
[32] New and old function spaces in the theory of PDEs and nonlinear analysis, Banach Center Publications, 64, Polish Acad. Sci., Warsaw, 2004 | MR | Zbl
[33] A study of Jacobians in Hardy-Orlicz Spaces, Proc. Royal Soc. Edinburgh, Volume 129A (1999), pp. 539-570 | DOI | MR | Zbl
[34] On functions with conditions on the mean oscillation, Ark. Math., Volume 14 (1976), pp. 189-196 | DOI | MR | Zbl
[35] Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J., Volume 47 (1980), pp. 959-982 | DOI | MR | Zbl
[36] Interpolation between
[37] On functions of bounded mean oscillation, Comm. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl
[38] Carleson measures and the Fefferman-Stein decomposition of
[39] Extension theorems for
[40] Interpolation between Hardy spaces, Wadsworth Math. Ser., I, II (Chicago, III, 1981), Wadsworth, Belmont, CA, 1983 | MR | Zbl
[41] On weak convergence in
[42] Hardy and Lipschitz spaces on subsets of
[43] Hardy spaces of exact forms on Lipschitz domains in
[44] Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 961-969 | DOI | MR | Zbl
[45]
[46] A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., Volume 21 (1989), pp. 245-248 | DOI | MR | Zbl
[47] Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris Ser. I Math., Volume 311 (1990), pp. 13-17 | MR | Zbl
[48] On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré, Anal. Non Lin., Volume 11 (1994), pp. 217-243 | EuDML | Numdam | MR | Zbl
[49] Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 489-507 | EuDML | Numdam | MR | Zbl
[50] Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math., Volume 105 (1993), pp. 105-119 | EuDML | MR | Zbl
[51] Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan, Volume 37 (1985), pp. 207-218 | DOI | MR | Zbl
[52] Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Dekker, New York, 1991 | MR | Zbl
[53] Grand Sobolev spaces and their applications to variational problems, Le Matematiche (Catania), Volume 51 (1996(1997)) no. 2, pp. 335-347 | MR | Zbl
[54] Bounded Toeplitz operators on
[55] Note on the class
[56] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, 1993 | MR | Zbl
[57] Bounded mean oscillations with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., Volume 28 (1979), pp. 511-544 | DOI | MR | Zbl
[58] Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal., Volume 100 (1988), pp. 105-127 | DOI | MR | Zbl
[59] Compensated compactness and applications to partial differential equations, Res. Notes in Math, 39, Pitman, Boston, 1979 | MR | Zbl
[60] A constructive proof of the Fefferman-Stein decomposition of
[61] Hardy spaces on the Euclidean space, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2001 | MR | Zbl
[62] Biting theorems for Jacobians and their applications, Ann. I. H. P. Anal. Non Lin., Volume 7 (1990), pp. 345-365 | EuDML | Numdam | MR | Zbl
[63] Espaces de Hardy et domaines de Denjoy, Ark. Mat., Volume 27 (1989), pp. 363-378 | DOI | MR | Zbl
Cité par Sources :