On the Product of Functions in BMO and H1
[Produits de fonctions de H1 et BMO]
Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1405-1439.

Le produit d’une fonction à oscillation moyenne bornée avec une fonction de l’espace de Hardy H1 n’est pas intégrable en général. Nous montrons toutefois qu’on peut lui donner un sens en tant que distribution tempérée, ceci grâce à la dualité H1, BMO. Cette distribution peut de plus s’écrire comme la somme d’une fonction intégrable et d’une distribution appartenant à un espace de Hardy-Orlicz adapté. Lorsqu’on considère un tel produit pour les fonctions holomorphes du disque unité, cet énoncé possède une réciproque : toute fonction holomorphe de l’espace de Hardy-Orlicz considéré peut s’écrire comme un tel produit.

The point-wise product of a function of bounded mean oscillation with a function of the Hardy space H1 is not locally integrable in general. However, in view of the duality between H1 and BMO, we are able to give a meaning to the product as a Schwartz distribution. Moreover, this distribution can be written as the sum of an integrable function and a distribution in some adapted Hardy-Orlicz space. When dealing with holomorphic functions in the unit disc, the converse is also valid: every holomorphic of the corresponding Hardy-Orlicz space can be written as a product of a function in the holomorphic Hardy space H1 and a holomorphic function with boundary values of bounded mean oscillation.

DOI : 10.5802/aif.2299
Classification : 42B25, 42B30, 30H
Keywords: Hardy spaces, bounded mean oscillation, Jacobian lemma, Jacobian equation, Hardy-Orlicz spaces, div-curl lemma, factorization in Hardy spaces, weak Jacobian.
Mot clés : Espaces de Hardy, fonctions à oscillation moyenne bornée, lemme du Jacobien, équation du Jacobien, espaces de hardy-Orlicz, lemme div-curl, factorisation dans les classes de hardy, Jacobien faible.
Bonami, Aline 1 ; Iwaniec, Tadeusz 2 ; Jones, Peter 3 ; Zinsmeister, Michel 4

1 Université d’Orléans MAPMO BP 6759 45067 Orléans cedex
2 Syracuse University 215 Carnegie Hall Syracuse NY 13244-1150 (USA)
3 Yale University Mathematics Dept. PO Box 208 283 New Haven CT 06520-8283 (USA)
4 Université d’Orléans MAPMO BP 6759 45067 Orléans cedex et Ecole Polytechnique PMC 91128 Palaiseau
@article{AIF_2007__57_5_1405_0,
     author = {Bonami, Aline and Iwaniec, Tadeusz and Jones, Peter and Zinsmeister, Michel},
     title = {On the {Product} of {Functions} in {\protect\emph{BMO}} and {\protect\emph{H}}$^\text{1}$},
     journal = {Annales de l'Institut Fourier},
     pages = {1405--1439},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     doi = {10.5802/aif.2299},
     zbl = {1132.42010},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2299/}
}
TY  - JOUR
AU  - Bonami, Aline
AU  - Iwaniec, Tadeusz
AU  - Jones, Peter
AU  - Zinsmeister, Michel
TI  - On the Product of Functions in BMO and H$^\text{1}$
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 1405
EP  - 1439
VL  - 57
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2299/
DO  - 10.5802/aif.2299
LA  - en
ID  - AIF_2007__57_5_1405_0
ER  - 
%0 Journal Article
%A Bonami, Aline
%A Iwaniec, Tadeusz
%A Jones, Peter
%A Zinsmeister, Michel
%T On the Product of Functions in BMO and H$^\text{1}$
%J Annales de l'Institut Fourier
%D 2007
%P 1405-1439
%V 57
%N 5
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2299/
%R 10.5802/aif.2299
%G en
%F AIF_2007__57_5_1405_0
Bonami, Aline; Iwaniec, Tadeusz; Jones, Peter; Zinsmeister, Michel. On the Product of Functions in BMO and H$^\text{1}$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1405-1439. doi : 10.5802/aif.2299. https://www.numdam.org/articles/10.5802/aif.2299/

[1] Astala, K.; Iwaniec, T.; Koskela, P.; Martin, G. Mappings of BMO-bounded distortion, Math. Ann., Volume 317 (2000), pp. 703-726 | DOI | MR | Zbl

[2] Astala, K.; Zinsmeister, M. Teichmüller spaces and BMOA, Math. Ann., Volume 289 (1991), pp. 613-625 | DOI | MR | Zbl

[3] Ball, J. M. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 703-726 | MR | Zbl

[4] Ball, J. M.; Murat, F. Remarks on Chacon’s Biting Lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663 | Zbl

[5] Ball, J. M.; Zhang, K. Lower semicontinuity of multiple integrals and the biting lemma, Proc. Royal Soc. Edinburgh. Sec. A, Volume 114 (1990), pp. 367-379 | DOI | MR | Zbl

[6] Bonami, A.; Madan, S. Balayage of Carleson measures and Hankel operators on generalized Hardy spaces, Math. Nachr., Volume 193 (1991), pp. 237-245 | DOI | MR | Zbl

[7] Brooks, J. K.; Chacon, R.C. Continuity and compactness of measures, Advances Math., Volume 107 (1980), pp. 16-26 | DOI | MR | Zbl

[8] Chang, D.-C.; Dafni, G.; Sadosky, C. A Div-Curl lemma in BMO on a domain, Progr. Math., 238, Birkhäuser, Boston, 2005 | MR

[9] Chang, D. C.; Krantz, S. G.; Stein, E. M. Hp-theory on a smooth domain in n and elliptic boundary value problems, J. Funct. Anal., Volume 114 (1993), pp. 286-347 | DOI | MR | Zbl

[10] Coifman, R. R.; Lions, P. L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286 | MR | Zbl

[11] Coifman, R. R.; Rochberg, R. Another characterization of BMO, Proc. Amer. Math. Soc., Volume 79 (1980), pp. 249-254 | DOI | MR | Zbl

[12] Coifman, R. R.; Rochberg, R.; Weiss, G. Factorization theorems for Hardy spaces in several variables, Ann. of Math., Volume 103 (1976), pp. 611-635 | DOI | MR | Zbl

[13] Coifman, R. R.; Weiss, G. Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 569-645 | DOI | MR | Zbl

[14] Dafni, G. Local VMO and weak convergence in H1, Canad. Math. Bull., Volume 45 (2002), pp. 46-59 | DOI | MR | Zbl

[15] Dafni, G. Nonhomogeneous Div-Curl lemmas and local Hardy spaces, Adv. Differential Equations, Volume 10 (2005), pp. 505-526 | MR | Zbl

[16] Evans, L. C. Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics, 74, American Mathematical Society, Providence, 1990 | MR | Zbl

[17] Evans, L. C.; Müller, S. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, Journ. Amer. Math. Soc., Volume 7 (1994), pp. 199-219 | DOI | MR | Zbl

[18] Fefferman, C. Characterization of bounded mean oscillations, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 587-588 | DOI | MR | Zbl

[19] Fefferman, C.; Stein, E. M. Hp-spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | DOI | MR | Zbl

[20] Garnett, J. B. Bounded Analytic Functions, Pure and Applied Mathematics, 96, Academic Press, New York, 1981 | MR | Zbl

[21] Giannetti, F.; Iwaniec, T.; Onninen, J.; Verde, A. Estimates of Jacobians by subdeterminants, Journ. of Geometric Anal., Volume 12 (2002), pp. 223-254 | MR | Zbl

[22] Gotoh, Y. Remarks on multipliers for BMO on general domains, Kodai Math. J., Volume 16 (1993), pp. 79-89 | DOI | MR | Zbl

[23] Gotoh, Y. On multipliers for BMOφ on general domains, Ann. Acad. Sci. Fenn. Ser. A. I. Math., Volume 19 (1994), pp. 143-161 | MR | Zbl

[24] Greco, L.; Iwaniec, T.; Sbordone, C. Inverting the p-harmonic operator, Manuscripta Math., Volume 92 (1997), pp. 249-258 | DOI | MR | Zbl

[25] Hélein, F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math., Volume 70 (1991), pp. 203-218 | DOI | MR | Zbl

[26] Iwaniec, T.; Koskela, P.; Martin, G.; Sbordone, C. Mappings of finite distortion: LnlogαL - integrability, J. London Math. Soc., Volume 67 (2003), pp. 123-136 | DOI | MR | Zbl

[27] Iwaniec, T.; Martin, G. Geometric Function Theory and Nonlinear Analysis, Oxford University Press, New-York, 2001 | Zbl

[28] Iwaniec, T.; Onninen, J. H1- estimates of Jacobians by subdeterminants, Mathematische Annalen, Volume 324 (2002), pp. 341-358 | DOI | MR | Zbl

[29] Iwaniec, T.; Sbordone, C. On the integrability of the Jacobian under minimal hypothesis, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 129-143 | DOI | MR | Zbl

[30] Iwaniec, T.; Sbordone, C. Weak minima of variational integrals, J. Reine Angew. Math., Volume 454 (1994), pp. 143-161 | DOI | MR | Zbl

[31] Iwaniec, T.; Sbordone, C. Quasiharmonic fields, Ann. I.H. Poincaré Anal. Non Lin., Volume 18 (2001), pp. 519-572 | DOI | Numdam | MR | Zbl

[32] Iwaniec, T.; Sbordone, C. New and old function spaces in the theory of PDEs and nonlinear analysis, Banach Center Publications, 64, Polish Acad. Sci., Warsaw, 2004 | MR | Zbl

[33] Iwaniec, T.; Verde, A. A study of Jacobians in Hardy-Orlicz Spaces, Proc. Royal Soc. Edinburgh, Volume 129A (1999), pp. 539-570 | DOI | MR | Zbl

[34] Janson, S. On functions with conditions on the mean oscillation, Ark. Math., Volume 14 (1976), pp. 189-196 | DOI | MR | Zbl

[35] Janson, S. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J., Volume 47 (1980), pp. 959-982 | DOI | MR | Zbl

[36] Janson, S.; Jones, P. W. Interpolation between Hp spaces; The complex method, Journ. of Funct. Anal., Volume 48 (1982), pp. 58-80 | DOI | MR | Zbl

[37] John, F.; Nirenberg, L. On functions of bounded mean oscillation, Comm. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl

[38] Jones, P. W. Carleson measures and the Fefferman-Stein decomposition of BMO(n), Ann. of Math., Volume 111 (1980), pp. 197-208 | DOI | MR | Zbl

[39] Jones, P. W. Extension theorems for BMO, Indiana Univ. Math. J., Volume 29 (1980), pp. 41-66 | DOI | MR | Zbl

[40] Jones, P. W. Interpolation between Hardy spaces, Wadsworth Math. Ser., I, II (Chicago, III, 1981), Wadsworth, Belmont, CA, 1983 | MR | Zbl

[41] Jones, P. W.; Journé, J. L. On weak convergence in H1(d), Proc. Amer. Math. Soc., Volume 120 (1994), pp. 137-138 | DOI | MR | Zbl

[42] Jonsson, A.; Sjögren, P.; Wallin, H. Hardy and Lipschitz spaces on subsets of n, Studia Math., Volume 80 (1984), pp. 141-166 | EuDML | MR | Zbl

[43] Lou, Z.; McIntosh, A. Hardy spaces of exact forms on Lipschitz domains in n, Indiana Univ. Math. J., Volume 53 (2004), pp. 583-611 | DOI | MR | Zbl

[44] Milman, M.; Schonbek, T. Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 961-969 | DOI | MR | Zbl

[45] Miyachi, A. Hp spaces over open subsets of n, Studia Math., Volume 95 (1990), pp. 205-228 | EuDML | MR | Zbl

[46] Müller, S. A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., Volume 21 (1989), pp. 245-248 | DOI | MR | Zbl

[47] Müller, S. Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris Ser. I Math., Volume 311 (1990), pp. 13-17 | MR | Zbl

[48] Müller, S.; Qi, T.; Yan, B.S. On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré, Anal. Non Lin., Volume 11 (1994), pp. 217-243 | EuDML | Numdam | MR | Zbl

[49] Murat, F. Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 489-507 | EuDML | Numdam | MR | Zbl

[50] Nakai, E. Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math., Volume 105 (1993), pp. 105-119 | EuDML | MR | Zbl

[51] Nakai, E.; Yabuta, K. Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan, Volume 37 (1985), pp. 207-218 | DOI | MR | Zbl

[52] Rao, M. M.; Ren, Z. D. Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Dekker, New York, 1991 | MR | Zbl

[53] Sbordone, C. Grand Sobolev spaces and their applications to variational problems, Le Matematiche (Catania), Volume 51 (1996(1997)) no. 2, pp. 335-347 | MR | Zbl

[54] Stegenga, D. A. Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation, Amer. J. Math., Volume 98 (1976), pp. 573-589 | DOI | MR | Zbl

[55] Stein, E. M. Note on the class LlogL , Studia Math., Volume 32 (1969), pp. 305-310 | EuDML | MR | Zbl

[56] Stein, E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, 1993 | MR | Zbl

[57] Stromberg, J. O. Bounded mean oscillations with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., Volume 28 (1979), pp. 511-544 | DOI | MR | Zbl

[58] Sverak, V. Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal., Volume 100 (1988), pp. 105-127 | DOI | MR | Zbl

[59] Tartar, L. Compensated compactness and applications to partial differential equations, Res. Notes in Math, 39, Pitman, Boston, 1979 | MR | Zbl

[60] Uchiyama, A. A constructive proof of the Fefferman-Stein decomposition of BMO(n), Acta. Math., Volume 148 (1982), pp. 215-241 | DOI | MR | Zbl

[61] Uchiyama, A. Hardy spaces on the Euclidean space, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2001 | MR | Zbl

[62] Zhang, K. Biting theorems for Jacobians and their applications, Ann. I. H. P. Anal. Non Lin., Volume 7 (1990), pp. 345-365 | EuDML | Numdam | MR | Zbl

[63] Zinsmeister, M. Espaces de Hardy et domaines de Denjoy, Ark. Mat., Volume 27 (1989), pp. 363-378 | DOI | MR | Zbl

Cité par Sources :