Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
[Algèbre de descente généralisée et construction des caractères irréductibles des groupes hyperoctaédraux]
Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 131-181.

Nous construisons une sous-algèbre Σ(Wn) de dimension 2·3n-1 de l’algèbre du groupe de Weyl Wn de type Bn contenant son algèbre de Solomon usuelle ainsi que celle de 𝔖n : Σ(Wn) n’est autre que l’algèbre de Mantaci-Reutenauer mais notre point de vue nous permet de construire un morphisme d’algèbres surjectif Σ(Wn)ZIrr(Wn). La construction de Jöllenbeck des caractères irréductibles de 𝔖n à partir des classes d’équivalence coplaxique se transpose alors à Wn. Un appendice à cet article, écrit par P. Baumann et C. Hohlweg, donne le lien combinatoire explicite entre cette construction des caractères irréductibles de Wn et celle obtenue par W. Specht en 1932.

We construct a subalgebra Σ(Wn) of dimension 2·3n-1 of the group algebra of the Weyl group Wn of type Bn containing its usual Solomon algebra and the one of 𝔖n: Σ(Wn) is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras Σ(Wn)ZIrr(Wn). Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to Wn. In an appendix, P. Baumann and C. Hohlweg present in an explicit and combinatorial way the relation between this construction of the irreducible characters of Wn and that of W. Specht.

DOI : 10.5802/aif.2176
Classification : 05E15
Keywords: descent algebra, hyperoctahedral group, coplactic algebra
Mot clés : algèbre de descente, groupe hyperoctaédral, algèbre coplaxique
Bonnafé, Cédric 1 ; Hohlweg, Christophe 2

1 Université de Franche-Comté Département de Mathématiques 16 route de Gray 25000 Besançon (France)
2 The Fields Institute 222 College Street Toronto, Ontario M5T 3J1 (Canada)
@article{AIF_2006__56_1_131_0,
     author = {Bonnaf\'e, C\'edric and Hohlweg, Christophe},
     title = {Generalized descent algebra and construction of irreducible characters of~hyperoctahedral groups},
     journal = {Annales de l'Institut Fourier},
     pages = {131--181},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {1},
     year = {2006},
     doi = {10.5802/aif.2176},
     zbl = {1098.20011},
     mrnumber = {2228684},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2176/}
}
TY  - JOUR
AU  - Bonnafé, Cédric
AU  - Hohlweg, Christophe
TI  - Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 131
EP  - 181
VL  - 56
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2176/
DO  - 10.5802/aif.2176
LA  - en
ID  - AIF_2006__56_1_131_0
ER  - 
%0 Journal Article
%A Bonnafé, Cédric
%A Hohlweg, Christophe
%T Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups
%J Annales de l'Institut Fourier
%D 2006
%P 131-181
%V 56
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2176/
%R 10.5802/aif.2176
%G en
%F AIF_2006__56_1_131_0
Bonnafé, Cédric; Hohlweg, Christophe. Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups. Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 131-181. doi : 10.5802/aif.2176. https://www.numdam.org/articles/10.5802/aif.2176/

[1] Aguiar, M.; Mahajan, S. The Hopf algebra of signed permutations (in preparation)

[2] Blessenohl, D.; Hohlweg, C.; Schocker, M. A symmetry of the descent algebra of a finite Coxeter group, Adv. in Math., Volume 193 (2005), pp. 416-437 | DOI | MR | Zbl

[3] Blessenohl, D.; Schocker, M. Noncommutative Character Theory of Symmetric groups I, Imperial College press, London, 2005

[4] Bonnafé, C.; Iancu, L. Left cells in type Bn with unequal parameters, Represent. Theory, Volume 7 (2003), pp. 587-609 | DOI | MR | Zbl

[5] Bourbaki, N. 4-6, Groupes et algèbres de Lie, Hermann (1968) | MR | Zbl

[6] Geck, M. On the induction of Kazhdan-Lusztig cells, Bull. London Math. Soc., Volume 35 (2003) no. 5, pp. 608-614 | DOI | MR | Zbl

[7] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G. CHEVIE — A system for computing and procesing generic character tables, Applicable Algebra in Eng. Comm. and Comp., Volume 7 (1996), pp. 175-210 | DOI | MR | Zbl

[8] Geck, M.; Pfeiffer, G. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Mon. New Series, 21, LMS, 2000 | MR | Zbl

[9] Geissinger, L. Hopf algebras of symmetric functions and class functions, Comb. Represent. Groupe symétrique, Acte Table Ronde C.N.R.S (Lecture Notes in Math.), Volume 579, Strasbourg, 1976 (1977), pp. 168-181 | MR | Zbl

[10] Humphreys, J.E. Reflection groups and Coxeter groups, 29, Cambridge university press, 1990 | MR | Zbl

[11] Jőllenbeck, A. Nichtkommutative Charaktertheorie der symmetrischen Gruppen, Bayreuth. Math. Schr., Volume 56 (1999), pp. 1-41 | MR | Zbl

[12] Lascoux, A.; Schützenberger, M. P. Le monoïde plaxique, Noncommutative structures in algebra and geometric combinatorics (Quad. “Ricerca Sci.”), Volume 109, CNR, Rome, Naples, 1978 (1981), pp. 129-156 | MR | Zbl

[13] Lusztig, G. Characters of reductive groups over a finite field, Annals of Math. Studies, 107, Princeton University Press, 1984 | MR | Zbl

[14] Macdonald, I. G. Symmetric functions and Hall Polynomials, Oxford mathematical monographs, Oxford science publications, The Clarendon press, Oxford university press, 1995 (with contributions by A. Zelevinsky) | MR | Zbl

[15] Malvenuto, C.; Reutenauer, C. Duality between quasi-symmetric functions ans Solomon descent algebra, J. Algebra, Volume 177 (1995), pp. 967-982 | DOI | MR | Zbl

[16] Mantaci, R.; Reutenauer, C. A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products, Comm. Algebra, Volume 23 (1995) no. 1, pp. 27-56 | DOI | MR | Zbl

[17] Poirier, S.; Reutenauer, C. Algèbres de Hopf de tableaux, Ann. Sci. Math., Québec, Volume 19 (1996), pp. 79-90 | MR | Zbl

[18] Solomon, L. A Mackey formula in the group ring of a Coxeter group, J. Algebra, Volume 41 (1976), pp. 255-268 | DOI | MR | Zbl

[19] Specht, W. Eine Verallgemeinerung der symmetrischen Gruppe, Schriften Math. Seminar Berlin, Volume 1 (1932), pp. 1-32 | Zbl

[20] Stanley, R. P. Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A, Volume 32 (1982), pp. 132-161 | DOI | MR | Zbl

[21] Thibon, J. Y. Lectures on Noncommutative Symmetric Functions, Interaction of Combinatorics and Representation Theory (MSJ Memoirs), Volume 11, Math. Soc. of Japan, 2001, pp. 39-94 | MR | Zbl

Cité par Sources :