Soit
Let
Keywords: toric varieties, Fano varieties, reflexive polytopes, Fano polytopes
Mot clés : variétés toriques, variétés de Fano, polytopes réflexifs, polytopes de Fano
@article{AIF_2006__56_1_121_0, author = {Casagrande, Cinzia}, title = {The number of vertices of a {Fano} polytope}, journal = {Annales de l'Institut Fourier}, pages = {121--130}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2175}, zbl = {1095.52005}, mrnumber = {2228683}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2175/} }
TY - JOUR AU - Casagrande, Cinzia TI - The number of vertices of a Fano polytope JO - Annales de l'Institut Fourier PY - 2006 SP - 121 EP - 130 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2175/ DO - 10.5802/aif.2175 LA - en ID - AIF_2006__56_1_121_0 ER -
%0 Journal Article %A Casagrande, Cinzia %T The number of vertices of a Fano polytope %J Annales de l'Institut Fourier %D 2006 %P 121-130 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2175/ %R 10.5802/aif.2175 %G en %F AIF_2006__56_1_121_0
Casagrande, Cinzia. The number of vertices of a Fano polytope. Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 121-130. doi : 10.5802/aif.2175. https://www.numdam.org/articles/10.5802/aif.2175/
[1] Generalized Mukai conjecture for special Fano varieties, Central European Journal of Mathematics, Volume 2 (2004) no. 2, pp. 272-293 | DOI | MR | Zbl
[2] Toric Fano threefolds, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, Volume 45 (1981) no. 4, pp. 704-717 (in Russian). English translation: Mathematics of the USSR Izvestiya, 19 (1982), p. 13-25 | MR | Zbl
[3] Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Journal of Algebraic Geometry, Volume 3 (1994), pp. 493-535 | MR | Zbl
[4] On the classification of toric Fano 4-folds, Journal of Mathematical Sciences (New York), Volume 94 (1999), pp. 1021-1050 | DOI | MR | Zbl
[5] Sur une conjecture de Mukai, Commentarii Mathematici Helvetici, Volume 78 (2003), pp. 601-626 | DOI | MR | Zbl
[6] Toric Fano varieties and birational morphisms, International Mathematics Research Notices, Volume 27 (2003), pp. 1473-1505 | DOI | MR | Zbl
[7] Characterizations of projective space and applications to complex symplectic geometry, Higher Dimensional Birational Geometry (Advanced Studies in Pure Mathematics), Volume 35, Mathematical Society of Japan, 2002, pp. 1-89 | MR | Zbl
[8] Higher-Dimensional Algebraic Geometry, Universitext, Springer Verlag, 2001 | MR | Zbl
[9] Fano varieties, Higher Dimensional Varieties and Rational Points (Bolyai Society Mathematical Studies), Volume 12, Springer Verlag, Budapest, 2001 (2003), pp. 93-132 | MR
[10] Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics, 168, Springer Verlag, 1996 | MR | Zbl
[11] Convex Polytopes, Graduate Texts in Mathematics, 221, Springer Verlag, 2003 (first edition 1967) | MR | Zbl
[12] Complete toric varieties with reductive automorphism group (2004) (preprint math.AG/0407491)
[13] Gorenstein toric Fano varieties, Manuscripta Mathematica, Volume 116 (2005) no. 2, pp. 183-210 | DOI | MR | Zbl
[14] A characterization of products of projective spaces (2003) (preprint, available at the author’s web page http://www.science.unitn.it/~occhetta/)
[15] Toward the classification of higher-dimensional toric Fano varieties, Tôhoku Mathematical Journal, Volume 52 (2000), pp. 383-413 | DOI | MR | Zbl
[16] Toric Fano varieties and systems of roots, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, Volume 48 (1984) no. 2, pp. 237-263 (in Russian). English translation: Mathematics of the USSR Izvestiya, 24 (1985), p. 221-244 | MR | Zbl
[17] The classification of Fano 3-folds with torus embeddings, Tokyo Journal of Mathematics, Volume 5 (1982), pp. 37-48 | DOI | MR | Zbl
[18] On a conjecture of Mukai, Manuscripta Mathematica, Volume 68 (1990), pp. 135-141 | DOI | MR | Zbl
[19] Toric Mori theory and Fano manifolds, Geometry of Toric Varieties (Séminaires et Congrès), Volume 6, Société Mathématique de France, 2002, pp. 249-272 | MR | Zbl
- The Mukai Conjecture for Fano Quiver Moduli, Algebras and Representation Theory, Volume 27 (2024) no. 4, p. 1641 | DOI:10.1007/s10468-024-10268-8
- On a conjecture of Stolz in the toric case, Proceedings of the American Mathematical Society, Volume 152 (2024) no. 8, p. 3617 | DOI:10.1090/proc/16823
- Bounds on the Picard rank of toric Fano varieties with minimal curve constraints, Proceedings of the American Mathematical Society (2023) | DOI:10.1090/proc/16267
- Fano quiver moduli, Canadian Mathematical Bulletin, Volume 64 (2021) no. 4, p. 984 | DOI:10.4153/s0008439520001009
- A polar dual to the momentum of toric Fano manifolds, Complex Manifolds, Volume 8 (2021) no. 1, p. 230 | DOI:10.1515/coma-2020-0116
- Maximum likelihood estimation of toric Fano varieties, Algebraic Statistics, Volume 11 (2020) no. 1, p. 5 | DOI:10.2140/astat.2020.11.5
- On Intrinsic Quadrics, Canadian Journal of Mathematics, Volume 72 (2020) no. 1, p. 145 | DOI:10.4153/cjm-2018-037-5
- The generalized Mukai conjecture for toric log Fano pairs, European Journal of Mathematics, Volume 5 (2019) no. 3, p. 858 | DOI:10.1007/s40879-018-0302-5
- Toric Fano varieties associated to finite simple graphs, Tohoku Mathematical Journal, Volume 71 (2019) no. 1 | DOI:10.2748/tmj/1552100446
- A note on the fibres of Mori fibre spaces, European Journal of Mathematics, Volume 4 (2018) no. 3, p. 859 | DOI:10.1007/s40879-018-0219-z
- 12, 24 and beyond, Advances in Mathematics, Volume 319 (2017), p. 472 | DOI:10.1016/j.aim.2017.08.023
- A bound for the splitting of smooth Fano polytopes with many vertices, Journal of Algebraic Combinatorics, Volume 43 (2016) no. 1, p. 153 | DOI:10.1007/s10801-015-0630-1
- Gorenstein spherical Fano varieties, Geometriae Dedicata, Volume 178 (2015) no. 1, p. 111 | DOI:10.1007/s10711-015-0047-y
- Smooth Fano polytopes arising from finite directed graphs, Kyoto Journal of Mathematics, Volume 55 (2015) no. 3 | DOI:10.1215/21562261-3089073
- On smooth Gorenstein polytopes, Tohoku Mathematical Journal, Volume 67 (2015) no. 4 | DOI:10.2748/tmj/1450798070
- Smooth Fano Polytopes with Many Vertices, Discrete Computational Geometry, Volume 52 (2014) no. 2, p. 153 | DOI:10.1007/s00454-014-9607-4
- Minimal Rational Curves on Complete Toric Manifolds and Applications, Proceedings of the Edinburgh Mathematical Society, Volume 57 (2014) no. 1, p. 111 | DOI:10.1017/s001309151300093x
- On a Generalization of the Mukai Conjecture for Fano Fourfolds, Tokyo Journal of Mathematics, Volume 37 (2014) no. 2 | DOI:10.3836/tjm/1422452796
- THE BOUNDARY VOLUME OF A LATTICE POLYTOPE, Bulletin of the Australian Mathematical Society, Volume 85 (2012) no. 1, p. 84 | DOI:10.1017/s0004972711002577
- Smooth Fano Polytopes Arising from Finite Partially Ordered Sets, Discrete Computational Geometry, Volume 45 (2011) no. 3, p. 449 | DOI:10.1007/s00454-010-9271-2
- Roots of Ehrhart Polynomials of Smooth Fano Polytopes, Discrete Computational Geometry, Volume 46 (2011) no. 3, p. 488 | DOI:10.1007/s00454-010-9275-y
- Rational curves and bounds on the Picard number of Fano manifolds, Geometriae Dedicata, Volume 147 (2010) no. 1, p. 207 | DOI:10.1007/s10711-009-9452-4
- Frobenius splitting and derived category of toric varieties, Illinois Journal of Mathematics, Volume 54 (2010) no. 2 | DOI:10.1215/ijm/1318598676
- THE PSEUDO-INDEX OF HOROSPHERICAL FANO VARIETIES, International Journal of Mathematics, Volume 21 (2010) no. 09, p. 1147 | DOI:10.1142/s0129167x10006422
-
-factorial Gorenstein toric Fano varieties with large Picard number, Tohoku Mathematical Journal, Volume 62 (2010) no. 1 | DOI:10.2748/tmj/1270041023 - A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds, Milan Journal of Mathematics, Volume 77 (2009) no. 1, p. 361 | DOI:10.1007/s00032-009-0097-4
- Classification of toric Fano 5-folds, advg, Volume 9 (2009) no. 1, p. 85 | DOI:10.1515/advgeom.2009.005
- ON THE PICARD NUMBER OF ALMOST FANO THREEFOLDS WITH PSEUDO-INDEX > 1, International Journal of Mathematics, Volume 19 (2008) no. 02, p. 173 | DOI:10.1142/s0129167x08004625
- Classification of terminal simplicial reflexive d-polytopes with 3d − 1 vertices, manuscripta mathematica, Volume 125 (2007) no. 1, p. 69 | DOI:10.1007/s00229-007-0133-z
Cité par 29 documents. Sources : Crossref