The number of vertices of a Fano polytope
[Le nombre de sommets d’un polytope de Fano]
Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 121-130.

Soit X une variété de Fano torique, Gorenstein et -factorielle. Nous démontrons deux conjectures sur le nombre de Picard maximal de X en fonction de sa dimension et de son pseudo-indice, et nous caractérisons les cas limites. De façon équivalente, nous déterminons le nombre maximal de sommets d’un polytope réflexif simplicial.

Let X be a Gorenstein, -factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of X in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.

DOI : 10.5802/aif.2175
Classification : 52B20, 14M25, 14J45
Keywords: toric varieties, Fano varieties, reflexive polytopes, Fano polytopes
Mot clés : variétés toriques, variétés de Fano, polytopes réflexifs, polytopes de Fano
Casagrande, Cinzia 1

1 Università di Pisa Dipartimento di Matematica “L. Tonelli” Largo Bruno Pontecorvo, 5 56127 Pisa (Italy)
@article{AIF_2006__56_1_121_0,
     author = {Casagrande, Cinzia},
     title = {The number of vertices of a {Fano} polytope},
     journal = {Annales de l'Institut Fourier},
     pages = {121--130},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {1},
     year = {2006},
     doi = {10.5802/aif.2175},
     zbl = {1095.52005},
     mrnumber = {2228683},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2175/}
}
TY  - JOUR
AU  - Casagrande, Cinzia
TI  - The number of vertices of a Fano polytope
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 121
EP  - 130
VL  - 56
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2175/
DO  - 10.5802/aif.2175
LA  - en
ID  - AIF_2006__56_1_121_0
ER  - 
%0 Journal Article
%A Casagrande, Cinzia
%T The number of vertices of a Fano polytope
%J Annales de l'Institut Fourier
%D 2006
%P 121-130
%V 56
%N 1
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2175/
%R 10.5802/aif.2175
%G en
%F AIF_2006__56_1_121_0
Casagrande, Cinzia. The number of vertices of a Fano polytope. Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 121-130. doi : 10.5802/aif.2175. https://www.numdam.org/articles/10.5802/aif.2175/

[1] Andreatta, Marco; Chierici, Elena; Occhetta, Gianluca Generalized Mukai conjecture for special Fano varieties, Central European Journal of Mathematics, Volume 2 (2004) no. 2, pp. 272-293 | DOI | MR | Zbl

[2] Batyrev, Victor V. Toric Fano threefolds, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, Volume 45 (1981) no. 4, pp. 704-717 (in Russian). English translation: Mathematics of the USSR Izvestiya, 19 (1982), p. 13-25 | MR | Zbl

[3] Batyrev, Victor V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Journal of Algebraic Geometry, Volume 3 (1994), pp. 493-535 | MR | Zbl

[4] Batyrev, Victor V. On the classification of toric Fano 4-folds, Journal of Mathematical Sciences (New York), Volume 94 (1999), pp. 1021-1050 | DOI | MR | Zbl

[5] Bonavero, Laurent; Casagrande, Cinzia; Debarre, Olivier; Druel, Stéphane Sur une conjecture de Mukai, Commentarii Mathematici Helvetici, Volume 78 (2003), pp. 601-626 | DOI | MR | Zbl

[6] Casagrande, Cinzia Toric Fano varieties and birational morphisms, International Mathematics Research Notices, Volume 27 (2003), pp. 1473-1505 | DOI | MR | Zbl

[7] Cho, Koji; Miyaoka, Yoichi; Shepherd-Barron, Nick Characterizations of projective space and applications to complex symplectic geometry, Higher Dimensional Birational Geometry (Advanced Studies in Pure Mathematics), Volume 35, Mathematical Society of Japan, 2002, pp. 1-89 | MR | Zbl

[8] Debarre, Olivier Higher-Dimensional Algebraic Geometry, Universitext, Springer Verlag, 2001 | MR | Zbl

[9] Debarre, Olivier Fano varieties, Higher Dimensional Varieties and Rational Points (Bolyai Society Mathematical Studies), Volume 12, Springer Verlag, Budapest, 2001 (2003), pp. 93-132 | MR

[10] Ewald, Günter Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics, 168, Springer Verlag, 1996 | MR | Zbl

[11] Grünbaum, Branko Convex Polytopes, Graduate Texts in Mathematics, 221, Springer Verlag, 2003 (first edition 1967) | MR | Zbl

[12] Nill, Benjamin Complete toric varieties with reductive automorphism group (2004) (preprint math.AG/0407491)

[13] Nill, Benjamin Gorenstein toric Fano varieties, Manuscripta Mathematica, Volume 116 (2005) no. 2, pp. 183-210 | DOI | MR | Zbl

[14] Occhetta, Gianluca A characterization of products of projective spaces (2003) (preprint, available at the author’s web page http://www.science.unitn.it/~occhetta/)

[15] Sato, Hiroshi Toward the classification of higher-dimensional toric Fano varieties, Tôhoku Mathematical Journal, Volume 52 (2000), pp. 383-413 | DOI | MR | Zbl

[16] Voskresenskiĭ, V. E.; Klyachko, Alexander Toric Fano varieties and systems of roots, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, Volume 48 (1984) no. 2, pp. 237-263 (in Russian). English translation: Mathematics of the USSR Izvestiya, 24 (1985), p. 221-244 | MR | Zbl

[17] Watanabe, Keiichi; Watanabe, Masayuki The classification of Fano 3-folds with torus embeddings, Tokyo Journal of Mathematics, Volume 5 (1982), pp. 37-48 | DOI | MR | Zbl

[18] Wiśniewski, Jarosław A. On a conjecture of Mukai, Manuscripta Mathematica, Volume 68 (1990), pp. 135-141 | DOI | MR | Zbl

[19] Wiśniewski, Jarosław A. Toric Mori theory and Fano manifolds, Geometry of Toric Varieties (Séminaires et Congrès), Volume 6, Société Mathématique de France, 2002, pp. 249-272 | MR | Zbl

  • Reineke, Markus The Mukai Conjecture for Fano Quiver Moduli, Algebras and Representation Theory, Volume 27 (2024) no. 4, p. 1641 | DOI:10.1007/s10468-024-10268-8
  • Wiemeler, Michael On a conjecture of Stolz in the toric case, Proceedings of the American Mathematical Society, Volume 152 (2024) no. 8, p. 3617 | DOI:10.1090/proc/16823
  • Beheshti, R.; Wormleighton, B. Bounds on the Picard rank of toric Fano varieties with minimal curve constraints, Proceedings of the American Mathematical Society (2023) | DOI:10.1090/proc/16267
  • Franzen, Hans; Reineke, Markus; Sabatini, Silvia Fano quiver moduli, Canadian Mathematical Bulletin, Volume 64 (2021) no. 4, p. 984 | DOI:10.4153/s0008439520001009
  • Sano, Yuji A polar dual to the momentum of toric Fano manifolds, Complex Manifolds, Volume 8 (2021) no. 1, p. 230 | DOI:10.1515/coma-2020-0116
  • Améndola, Carlos; Kosta, Dimitra; Kubjas, Kaie Maximum likelihood estimation of toric Fano varieties, Algebraic Statistics, Volume 11 (2020) no. 1, p. 5 | DOI:10.2140/astat.2020.11.5
  • Fahrner, Anne; Hausen, Jürgen On Intrinsic Quadrics, Canadian Journal of Mathematics, Volume 72 (2020) no. 1, p. 145 | DOI:10.4153/cjm-2018-037-5
  • Fujita, Kento The generalized Mukai conjecture for toric log Fano pairs, European Journal of Mathematics, Volume 5 (2019) no. 3, p. 858 | DOI:10.1007/s40879-018-0302-5
  • Suyama, Yusuke Toric Fano varieties associated to finite simple graphs, Tohoku Mathematical Journal, Volume 71 (2019) no. 1 | DOI:10.2748/tmj/1552100446
  • Codogni, Giulio; Fanelli, Andrea; Svaldi, Roberto; Tasin, Luca A note on the fibres of Mori fibre spaces, European Journal of Mathematics, Volume 4 (2018) no. 3, p. 859 | DOI:10.1007/s40879-018-0219-z
  • Godinho, Leonor; von Heymann, Frederik; Sabatini, Silvia 12, 24 and beyond, Advances in Mathematics, Volume 319 (2017), p. 472 | DOI:10.1016/j.aim.2017.08.023
  • Assarf, Benjamin; Nill, Benjamin A bound for the splitting of smooth Fano polytopes with many vertices, Journal of Algebraic Combinatorics, Volume 43 (2016) no. 1, p. 153 | DOI:10.1007/s10801-015-0630-1
  • Gagliardi, Giuliano; Hofscheier, Johannes Gorenstein spherical Fano varieties, Geometriae Dedicata, Volume 178 (2015) no. 1, p. 111 | DOI:10.1007/s10711-015-0047-y
  • Higashitani, Akihiro Smooth Fano polytopes arising from finite directed graphs, Kyoto Journal of Mathematics, Volume 55 (2015) no. 3 | DOI:10.1215/21562261-3089073
  • Lorenz, Benjamin; Nill, Benjamin On smooth Gorenstein polytopes, Tohoku Mathematical Journal, Volume 67 (2015) no. 4 | DOI:10.2748/tmj/1450798070
  • Assarf, Benjamin; Joswig, Michael; Paffenholz, Andreas Smooth Fano Polytopes with Many Vertices, Discrete Computational Geometry, Volume 52 (2014) no. 2, p. 153 | DOI:10.1007/s00454-014-9607-4
  • Chen, Yifei; Fu, Baohua; Hwang, Jun-Muk Minimal Rational Curves on Complete Toric Manifolds and Applications, Proceedings of the Edinburgh Mathematical Society, Volume 57 (2014) no. 1, p. 111 | DOI:10.1017/s001309151300093x
  • FUJITA, Kento On a Generalization of the Mukai Conjecture for Fano Fourfolds, Tokyo Journal of Mathematics, Volume 37 (2014) no. 2 | DOI:10.3836/tjm/1422452796
  • HEGEDÜS, GÁBOR; KASPRZYK, ALEXANDER M. THE BOUNDARY VOLUME OF A LATTICE POLYTOPE, Bulletin of the Australian Mathematical Society, Volume 85 (2012) no. 1, p. 84 | DOI:10.1017/s0004972711002577
  • Hibi, Takayuki; Higashitani, Akihiro Smooth Fano Polytopes Arising from Finite Partially Ordered Sets, Discrete Computational Geometry, Volume 45 (2011) no. 3, p. 449 | DOI:10.1007/s00454-010-9271-2
  • Hegedüs, Gábor; Kasprzyk, Alexander M. Roots of Ehrhart Polynomials of Smooth Fano Polytopes, Discrete Computational Geometry, Volume 46 (2011) no. 3, p. 488 | DOI:10.1007/s00454-010-9275-y
  • Novelli, Carla; Occhetta, Gianluca Rational curves and bounds on the Picard number of Fano manifolds, Geometriae Dedicata, Volume 147 (2010) no. 1, p. 207 | DOI:10.1007/s10711-009-9452-4
  • Costa, L.; Miró-Roig, R. M. Frobenius splitting and derived category of toric varieties, Illinois Journal of Mathematics, Volume 54 (2010) no. 2 | DOI:10.1215/ijm/1318598676
  • PASQUIER, BORIS THE PSEUDO-INDEX OF HOROSPHERICAL FANO VARIETIES, International Journal of Mathematics, Volume 21 (2010) no. 09, p. 1147 | DOI:10.1142/s0129167x10006422
  • Nill, Benjamin; Øbro, Mikkel Q-factorial Gorenstein toric Fano varieties with large Picard number, Tohoku Mathematical Journal, Volume 62 (2010) no. 1 | DOI:10.2748/tmj/1270041023
  • Andreatta, Marco A Conjecture of Mukai Relating Numerical Invariants of Fano Manifolds, Milan Journal of Mathematics, Volume 77 (2009) no. 1, p. 361 | DOI:10.1007/s00032-009-0097-4
  • Kreuzer, Maximilian; Nill, Benjamin Classification of toric Fano 5-folds, advg, Volume 9 (2009) no. 1, p. 85 | DOI:10.1515/advgeom.2009.005
  • CASAGRANDE, CINZIA; JAHNKE, PRISKA; RADLOFF, IVO ON THE PICARD NUMBER OF ALMOST FANO THREEFOLDS WITH PSEUDO-INDEX > 1, International Journal of Mathematics, Volume 19 (2008) no. 02, p. 173 | DOI:10.1142/s0129167x08004625
  • Øbro, Mikkel Classification of terminal simplicial reflexive d-polytopes with 3d − 1 vertices, manuscripta mathematica, Volume 125 (2007) no. 1, p. 69 | DOI:10.1007/s00229-007-0133-z

Cité par 29 documents. Sources : Crossref