On étudie les bases et les frames des noyaux reproduisants dans les sous-espaces modèles
We study the bases and frames of reproducing kernels in the model subspaces
Keywords: Inner function, shift-coinvariant subspace, reproducing kernel, Riesz basis, frame, stability, Inner function, shift-coinvariant subspace, reproducing kernel, Riesz basis, frame, stability
Mot clés : fonction intérieure, espace modèle, noyaux reproduisant, base de Riesz, frame, stabilité
@article{AIF_2005__55_7_2399_0, author = {Baranov, Anton}, title = {Stability of the bases and frames reproducing kernels in model spaces}, journal = {Annales de l'Institut Fourier}, pages = {2399--2422}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {7}, year = {2005}, doi = {10.5802/aif.2165}, mrnumber = {2207388}, zbl = {1101.30036}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2165/} }
TY - JOUR AU - Baranov, Anton TI - Stability of the bases and frames reproducing kernels in model spaces JO - Annales de l'Institut Fourier PY - 2005 SP - 2399 EP - 2422 VL - 55 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2165/ DO - 10.5802/aif.2165 LA - en ID - AIF_2005__55_7_2399_0 ER -
%0 Journal Article %A Baranov, Anton %T Stability of the bases and frames reproducing kernels in model spaces %J Annales de l'Institut Fourier %D 2005 %P 2399-2422 %V 55 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2165/ %R 10.5802/aif.2165 %G en %F AIF_2005__55_7_2399_0
Baranov, Anton. Stability of the bases and frames reproducing kernels in model spaces. Annales de l'Institut Fourier, Tome 55 (2005) no. 7, pp. 2399-2422. doi : 10.5802/aif.2165. https://www.numdam.org/articles/10.5802/aif.2165/
[1] Radial limits and invariant subspaces, Amer. J. Math., Volume 92 (1970) no. 2, pp. 332-342 | DOI | MR | Zbl
[2] Invariant subspaces of shift operators. An axiomatic approach, J. Soviet Math., Volume 22 (1983), pp. 1695-1708 Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981), 7-26; English transl. | DOI | Zbl
[3] A simple proof of the Volberg-Treil theorem on the embedding of coinvariant subspaces of the shift operator, J. Math. Sci., Volume 5 (1997) no. 2, pp. 1773-1778 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 217 (1994), 26-35; English transl. | DOI | MR | Zbl
[4] Embedding theorems for coinvariant subspaces of the shift operator. II, J. Math. Sci., Volume 110 (2002) no. 5, pp. 2907-2929 Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 262 (1999), 5-48; English transl. | DOI | MR | Zbl
[5] The Bernstein inequality in the de Branges spaces and embedding theorems, Amer. Math. Soc., Ser. 2, Volume 209 (2003), pp. 21-49 Proc. St. Petersburg Math. Soc., 9 (2001), 23-53; English transl. | MR | Zbl
[6] Weighted Bernstein-type inequalities and embedding theorems for shift-coinvariant subspaces, Algebra i Analiz, Volume 15 (2003) no. 5, pp. 138-168 English transl.: St. Petersburg Math. J., 15 (2004), 5, 733-752 | MR | Zbl
[7] Bernstein-type inequalities for shift-coinvariant subspaces and their applications to Carleson embeddings, J. Funct. Anal., Volume 223 (2005) no. 1, pp. 116-146 | DOI | MR | Zbl
[8] Geometric properties of projections of reproducing
kernels on
[9] Sharp extensions of Bernstein's inequality to rational spaces, Mathematika, Volume 43 (1996) no. 2, pp. 413-423 | DOI | MR | Zbl
[10] Hilbert spaces of entire functions, Prentice Hall, Englewood Cliffs (NJ), 1968 | MR | Zbl
[11] One-dimensional perturbations of restricted shifts, J. Anal. Math., Volume 25 (1972), pp. 169-191 | DOI | MR | Zbl
[12] Radial limits and star invariant subspaces of bounded mean oscillation, Amer. J. Math., Volume 108 (1986) no. 3, pp. 719-749 | DOI | MR | Zbl
[13] Carleson measures and operators on star-invariant subspaces, J. Oper. Theory, Volume 15 (1986) no. 1, pp. 181-202 | MR | Zbl
[14] On fractional derivatives and star invariant subspaces, Michigan Math. J., Volume 34 (1987) no. 3, pp. 391-406 | DOI | MR | Zbl
[15] Entire functions of exponential type and model
subspaces in
[16] Smooth functions in the range of a Hankel operator, Indiana Univ. Math. J., Volume 43 (1994), pp. 805-838 | DOI | MR | Zbl
[17] Differentiation in star-invariant subspaces I, II, J. Funct. Anal., Volume 192 (2002) no. 2, pp. 364-409 | DOI | MR | Zbl
[18] Bases of reproducing kernels in model spaces, J. Oper. Theory, Volume 46 (2001) no. 3 (suppl.), pp. 517-543 | MR | Zbl
[19] Complétude des noyaux reproduisants dans les espaces modèles, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 2, pp. 661-686 | DOI | Numdam | MR | Zbl
[20] Unconditional bases of exponentials and of reproducing kernels, Lecture Notes in Math., Volume 864 (1981), pp. 214-335 | DOI | MR | Zbl
[21] The exact value of the Paley-Wiener constant, Sov. Math. Dokl., Volume 5 (1964), pp. 559-561 Dokl. Akad. Nauk SSSR, 155 (1964), 1253-1254; English transl. | MR | Zbl
[22] An estimate of the derivative of a meromorphic function on the boundary of domain, Sov. Math. Dokl., Volume 15 (1974) no. 3, pp. 831-834 | MR | Zbl
[23] Complete interpolating sequences for Paley-Wiener
spaces and Muckenhoupt's (
[24] Treatise on the shift operator, Springer-Verlag, Berlin-Heidelberg, 1986 | MR | Zbl
[25] Operators, functions, and systems: an easy reading. Vol. 1, Hardy, Hankel, and Toeplitz (Mathematical Surveys and Monographs), Volume 92, AMS, Providence, RI, 2002 | MR | Zbl
[26] Operators, functions, and systems: an easy reading. Vol. 2, Model operators and systems (Mathematical Surveys and Monographs), Volume 93, AMS, Providence, RI, 2002 | MR | Zbl
[27] Fourier frames, Ann. of Math., Volume 155 (2002) no. 3, pp. 789-806 (2) | DOI | MR | Zbl
[28] On the connection between exponential bases and
certain related sequences in
[29] Embedding theorems for invariant subspaces of the inverse shift operator, J. Soviet Math., Volume 42 (1988) no. 2, pp. 1562-1572 Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 149 (1986), 38-51; English transl. | DOI | MR | Zbl
[30] An Introduction to Nonharmonic Fourier Series, Academic Press, New-York, 1980 | MR | Zbl
Cité par Sources :