Non-intersecting, simple, symmetric \- random walks and the extended Hahn kernel
[Marches aléatoires simples, symétriques et qui ne s'intersectent pas et le noyau de Hahn étendu]
Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2129-2145.

Nous montrons en utilisant des chemins qui ne s'intersectent pas qu'un pavage rhombique d'un hexagone, ou une partition planaire en boîtes, est décrit par un point processus ponctuel déterminentiel, donné par un noyau de Hahn étendu.

We show using non-intersecting paths, that a random rhombus tiling of a hexagon, or a boxed planar partition, is described by a determinantal point process given by an extended Hahn kernel.

DOI : 10.5802/aif.2155
Classification : 60K35, 15A32
Keywords: Non-intersecting paths, Dysons's Brownian motion, planar partitions, random tiling, determintal process
Mot clés : chemins qui ne s'intersectent pas, mouvement brownien de Dyson, partitions planaires, pavages aléatoires, processus déterminentiels
Johansson, Kurt 1

1 Royal Institute of Technology, department of mathematics, 100 44 Stockholm (Suède)
@article{AIF_2005__55_6_2129_0,
     author = {Johansson, Kurt},
     title = {Non-intersecting, simple, symmetric \- random walks and the extended {Hahn} kernel},
     journal = {Annales de l'Institut Fourier},
     pages = {2129--2145},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     doi = {10.5802/aif.2155},
     mrnumber = {2187949},
     zbl = {1083.60079},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2155/}
}
TY  - JOUR
AU  - Johansson, Kurt
TI  - Non-intersecting, simple, symmetric \- random walks and the extended Hahn kernel
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 2129
EP  - 2145
VL  - 55
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2155/
DO  - 10.5802/aif.2155
LA  - en
ID  - AIF_2005__55_6_2129_0
ER  - 
%0 Journal Article
%A Johansson, Kurt
%T Non-intersecting, simple, symmetric \- random walks and the extended Hahn kernel
%J Annales de l'Institut Fourier
%D 2005
%P 2129-2145
%V 55
%N 6
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2155/
%R 10.5802/aif.2155
%G en
%F AIF_2005__55_6_2129_0
Johansson, Kurt. Non-intersecting, simple, symmetric \- random walks and the extended Hahn kernel. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2129-2145. doi : 10.5802/aif.2155. https://www.numdam.org/articles/10.5802/aif.2155/

[1] G.E. Andrews; R. Askey; R. Roy Special Functions, Encyclopedia of Mathematics and its applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] J. Baik; T. Kriecherbauer; K.D.T.-R MacLaughlin; P. Miller Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles (math.CA/0310278, http://arxiv.org/abs/math.CA/0310278)

[3] H. Cohn; M. Larsen; J. Propp The shape of a typical boxed plane partition, New York J. of Math., Volume 4 (1998), pp. 137-165 | MR | Zbl

[4] F. J. Dyson A Brownian-Motion Model for the eigenvalues of a Random Matrix, J. Math. Phys., Volume 3 (1962), pp. 1191-1198 | DOI | MR | Zbl

[5] B. Eynard; M. L. Mehta Matrices coupled in a chain I: Eigenvalue correlations, J. of Phys. A, Volume 31 (1998), pp. 4449-4456 | DOI | MR | Zbl

[6] P. L. Ferrari; H. Spohn Step fluctuations for a faceted crystal, J. Stat. Phys., Volume 113 (2003), pp. 1-46 | DOI | MR | Zbl

[7] P. J. Forrester; T. Nagao; G. Honner Correlations for the orthogonal-unitary and symplectic-unitary transitions at the soft and hard edges, Nucl. Phys. B, Volume 553 (1999), pp. 601-643 | DOI | MR | Zbl

[8] K. Holmaker On a discrete Rodrigues' formula and a second class of orthogonal Hahn polynomials (Preprint, Department of Mathematics, Chalmers University of Technology, N° 1977-12)

[9] K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure, Annals of Math., Volume 153 (2001), pp. 259-296 | DOI | MR | Zbl

[10] K. Johansson Non-intersecting paths, random tilings and random matrices, Probab.Theory Relat. Fields, Volume 123 (2002), pp. 225-280 | DOI | MR | Zbl

[11] K. Johansson Discrete polynuclear growth and determinantal processes, Commun. Math. Phys., Volume 242 (2003), pp. 277-329 | MR | Zbl

[12] K. Johansson The Arctic circle and the Airy process (math.PR/0306216, to appear in Ann. Probab., http://arxiv.org/abs/math.PR/0306216) | MR | Zbl

[13] M. Katori; H. Tanemura Scaling limit of vicious walks and two-matrix model, Phys. Rev. E (2002)

[14] R. Kenyon Local statistics of lattice dimers, Ann. Inst. H. Poincaré, Probabilités et Statistiques, Volume 33 (1997), pp. 591-618 | DOI | Numdam | MR | Zbl

[15] M. L. Mehta Random Matrices, 2nd ed., Academic Press, San Diego, 1991 | MR | Zbl

[16] A. F. Nikiforov; S. K. Suslov; V. B. Uvarov Classical Orthogonal Polynomials of a Discrete Variable, Springer Series in Computational Physics, Berlin Heidelberg, Berlin Heidelberg, 1991 | MR | Zbl

[17] M. Prähofer; H. Spohn Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys., Volume 108 (2002), pp. 1076-1106 | MR | Zbl

[18] R. P. Stanley Enumerative Combinatorics, Cambridge University Press, Volume 2 (1999) | Zbl

[19] J. R. Stembridge Nonintersecting Paths, Pfaffians, and Plane Partitions, Adv. in Math., Volume 83 (1990), pp. 96-131 | DOI | MR | Zbl

  • Yao, Luming; Zhang, Lun On the gap probability of the tacnode process, Advances in Mathematics, Volume 438 (2024), p. 109474 | DOI:10.1016/j.aim.2023.109474
  • D’Alimonte, Lucas Entropic repulsion and scaling limit for a finite number of non-intersecting subcritical FK interfaces, Electronic Journal of Probability, Volume 29 (2024) no. none | DOI:10.1214/24-ejp1127
  • Duits, Maurice; Duse, Erik; Liu, Wenkui Lozenge tilings of a hexagon and q-Racah ensembles, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 40, p. 405202 | DOI:10.1088/1751-8121/ad653d
  • Assiotis, Theodoros Exact Solution of Interacting Particle Systems Related to Random Matrices, Communications in Mathematical Physics, Volume 402 (2023) no. 3, p. 2641 | DOI:10.1007/s00220-023-04777-8
  • Adler, Mark; van Moerbeke, Pierre Double interlacing in random tiling models, Journal of Mathematical Physics, Volume 64 (2023) no. 3 | DOI:10.1063/5.0093542
  • Dimitrov, Evgeni; Knizel, Alisa Asymptotics of discrete β-corners processes via two-level discrete loop equations, Probability and Mathematical Physics, Volume 3 (2022) no. 2, p. 247 | DOI:10.2140/pmp.2022.3.247
  • Nica, Mihai Intermediate disorder limits for multi-layer semi-discrete directed polymers, Electronic Journal of Probability, Volume 26 (2021) no. none | DOI:10.1214/21-ejp614
  • Krajenbrink, Alexandre; Le Doussal, Pierre; O'Connell, Neil Tilted elastic lines with columnar and point disorder, non-Hermitian quantum mechanics, and spiked random matrices: Pinning and localization, Physical Review E, Volume 103 (2021) no. 4 | DOI:10.1103/physreve.103.042120
  • Johnston, Samuel G. G.; O’Connell, Neil Scaling Limits for Non-intersecting Polymers and Whittaker Measures, Journal of Statistical Physics, Volume 179 (2020) no. 2, p. 354 | DOI:10.1007/s10955-020-02534-y
  • Laslier, Benoît Local limits of lozenge tilings are stable under bounded boundary height perturbations, Probability Theory and Related Fields, Volume 173 (2019) no. 3-4, p. 1243 | DOI:10.1007/s00440-018-0853-x
  • Gorin, Vadim; Petrov, Leonid Universality of local statistics for noncolliding random walks, The Annals of Probability, Volume 47 (2019) no. 5 | DOI:10.1214/18-aop1315
  • Adler, Mark; Johansson, Kurt; van Moerbeke, Pierre Tilings of Non-convex Polygons, Skew-Young Tableaux and Determinantal Processes, Communications in Mathematical Physics, Volume 364 (2018) no. 1, p. 287 | DOI:10.1007/s00220-018-3168-y
  • Adler, Mark; van Moerbeke, Pierre Probability distributions related to tilings of non-convex polygons, Journal of Mathematical Physics, Volume 59 (2018) no. 9 | DOI:10.1063/1.5049574
  • Duits, Maurice On global fluctuations for non-colliding processes, The Annals of Probability, Volume 46 (2018) no. 3 | DOI:10.1214/17-aop1185
  • Corwin, Ivan; Nica, Mihai Intermediate disorder directed polymers and the multi-layer extension of the stochastic heat equation, Electronic Journal of Probability, Volume 22 (2017) no. none | DOI:10.1214/17-ejp32
  • Knizel, Alisa Moduli Spaces ofq-Connections and Gap Probabilities, International Mathematics Research Notices (2016), p. rnv366 | DOI:10.1093/imrn/rnv366
  • Borodin, Alexei; Corwin, Ivan; Remenik, Daniel Multiplicative functionals on ensembles of non-intersecting paths, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 51 (2015) no. 1 | DOI:10.1214/13-aihp579
  • Katori, Makoto Determinantal Martingales and Correlations of Noncolliding Random Walks, Journal of Statistical Physics, Volume 159 (2015) no. 1, p. 21 | DOI:10.1007/s10955-014-1179-4
  • Petrov, Leonid Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes, Probability Theory and Related Fields, Volume 160 (2014) no. 3-4, p. 429 | DOI:10.1007/s00440-013-0532-x
  • Adler, Mark; Nordenstam, Eric; van Moerbeke, Pierre Consecutive minors for Dyson’s Brownian motions, Stochastic Processes and their Applications, Volume 124 (2014) no. 6, p. 2023 | DOI:10.1016/j.spa.2014.01.008
  • Johansson, Kurt Non-colliding Brownian Motions and the Extended Tacnode Process, Communications in Mathematical Physics, Volume 319 (2013) no. 1, p. 231 | DOI:10.1007/s00220-012-1600-2
  • Borodin, Alexei; Gorin, Vadim Markov processes of infinitely many nonintersecting random walks, Probability Theory and Related Fields, Volume 155 (2013) no. 3-4, p. 935 | DOI:10.1007/s00440-012-0417-4
  • Adler, Mark; Ferrari, Patrik L.; van Moerbeke, Pierre Nonintersecting random walks in the neighborhood of a symmetric tacnode, The Annals of Probability, Volume 41 (2013) no. 4 | DOI:10.1214/11-aop726
  • Ferrari, Patrik; Vető, Bálint Non-colliding Brownian bridges and the asymmetric tacnode process, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-1811
  • Petrov, Leonid Pfaffian Stochastic Dynamics of Strict Partitions, Electronic Journal of Probability, Volume 16 (2011) no. none | DOI:10.1214/ejp.v16-956
  • Forrester, Peter J; Nagao, Taro Determinantal correlations for classical projection processes, Journal of Statistical Mechanics: Theory and Experiment, Volume 2011 (2011) no. 08, p. P08011 | DOI:10.1088/1742-5468/2011/08/p08011
  • Ferrari, Patrik L.; Frings, René On the Partial Connection Between Random Matrices and Interacting Particle Systems, Journal of Statistical Physics, Volume 141 (2010) no. 4, p. 613 | DOI:10.1007/s10955-010-0070-1
  • Borodin, Alexei; Gorin, Vadim; Rains, Eric M. q-Distributions on boxed plane partitions, Selecta Mathematica, Volume 16 (2010) no. 4, p. 731 | DOI:10.1007/s00029-010-0034-y
  • Adler, Mark; Ferrari, Patrik L.; van Moerbeke, Pierre Airy processes with wanderers and new universality classes, The Annals of Probability, Volume 38 (2010) no. 2 | DOI:10.1214/09-aop493
  • Borodin, Alexei; Gorin, Vadim Shuffling algorithm for boxed plane partitions, Advances in Mathematics, Volume 220 (2009) no. 6, p. 1739 | DOI:10.1016/j.aim.2008.11.008
  • Borodin, Alexei; Ferrari, Patrik L.; Sasamoto, Tomohiro Two Speed TASEP, Journal of Statistical Physics, Volume 137 (2009) no. 5-6, p. 936 | DOI:10.1007/s10955-009-9837-7
  • Gorin, V. E. Nonintersecting paths and the Hahn orthogonal polynomial ensemble, Functional Analysis and Its Applications, Volume 42 (2008) no. 3, p. 180 | DOI:10.1007/s10688-008-0027-1
  • Bornemann, Folkmar; Ferrari, Patrik L.; Prähofer, Michael The Airy1 Process is not the Limit of the Largest Eigenvalue in GOE Matrix Diffusion, Journal of Statistical Physics, Volume 133 (2008) no. 3, p. 405 | DOI:10.1007/s10955-008-9621-0
  • Горин, Вадим Евгеньевич; Gorin, Vadim Evgen'evich Непересекающиеся пути и ансамбль ортогональных многочленов Хана, Функциональный анализ и его приложения, Volume 42 (2008) no. 3, p. 23 | DOI:10.4213/faa2910
  • Johansson, Kurt; Nordenstam, Eric Eigenvalues of GUE Minors, Electronic Journal of Probability, Volume 11 (2006) no. none | DOI:10.1214/ejp.v11-370

Cité par 35 documents. Sources : Crossref