Dans cet article, on construit une résolution injective explicite des puissances
symétriques tordues
The aim of this paper is to construct in the category of strict polynomial functors an
explicit injective resolution of the twisted symmetric powers
Mot clés : catégories de foncteurs, résolutions injectives, puissances symétriques, torsion de Frobenius,
Keywords: Functor categories, injective resolutions, symmetric powers, Frobenius twist,
@article{AIF_2005__55_5_1587_0, author = {Troesch, Alain}, title = {Une r\'esolution injective des puissances sym\'etriques tordues}, journal = {Annales de l'Institut Fourier}, pages = {1587--1634}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {5}, year = {2005}, doi = {10.5802/aif.2133}, mrnumber = {2172274}, zbl = {1077.18009}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.2133/} }
TY - JOUR AU - Troesch, Alain TI - Une résolution injective des puissances symétriques tordues JO - Annales de l'Institut Fourier PY - 2005 SP - 1587 EP - 1634 VL - 55 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2133/ DO - 10.5802/aif.2133 LA - fr ID - AIF_2005__55_5_1587_0 ER -
%0 Journal Article %A Troesch, Alain %T Une résolution injective des puissances symétriques tordues %J Annales de l'Institut Fourier %D 2005 %P 1587-1634 %V 55 %N 5 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2133/ %R 10.5802/aif.2133 %G fr %F AIF_2005__55_5_1587_0
Troesch, Alain. Une résolution injective des puissances symétriques tordues. Annales de l'Institut Fourier, Tome 55 (2005) no. 5, pp. 1587-1634. doi : 10.5802/aif.2133. https://www.numdam.org/articles/10.5802/aif.2133/
[1] General linear and functor cohomology over finite fields, Ann. of Math., Volume 150 (1999) no. 2, pp. 663-728 | DOI | MR | Zbl
[2] Autour de la cohomologie de MacLane des corps finis, Invent. Math., Volume 115 (1994), pp. 513-538 | DOI | MR | Zbl
[3] Cohomology of finite group schemes over a field, Invent. Math., Volume 127 (1997) no. 2, pp. 209-270 | DOI | MR | Zbl
[4] Analytic functors, unstable algebras and cohomology of classifying spaces (Alg. Top. Proc.), Volume 96 (1989), pp. 197-220 | Zbl
[5] On the
[6] Algèbre homologique des
[7] Projective resolutions of representations of GL
[8] Quelques calculs de cohomologie de compositions de puissances symétriques, Comm. in Algebra, Volume 30 (2002) no. 7, pp. 3351-3382 | DOI | MR | Zbl
[9] Une formule pour les extensions de foncteurs composés, Fund. Math., Volume 177 (2003), pp. 55-82 | DOI | MR | Zbl
- Additive polynomial superfunctors and cohomology, Journal of Algebra, Volume 632 (2023), p. 462 | DOI:10.1016/j.jalgebra.2023.05.041
- Superized Troesch complexes and cohomology for strict polynomial superfunctors, Journal of Pure and Applied Algebra, Volume 226 (2022) no. 12, p. 107136 | DOI:10.1016/j.jpaa.2022.107136
- Ext-groups in the Category of Strict Polynomial Functors, International Mathematics Research Notices, Volume 2021 (2021) no. 22, p. 17343 | DOI:10.1093/imrn/rnz284
- Poincaré duality for Ext–groups between strict polynomial functors, Proceedings of the American Mathematical Society, Volume 144 (2015) no. 3, p. 963 | DOI:10.1090/proc12782
- A construction of the universal classes for algebraic groups with the twisting spectral sequence, Transformation Groups, Volume 18 (2013) no. 2, p. 539 | DOI:10.1007/s00031-013-9222-0
- Universal classes for algebraic groups, Duke Mathematical Journal, Volume 151 (2010) no. 2 | DOI:10.1215/00127094-2009-064
Cité par 6 documents. Sources : Crossref