Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems
[Faisceaux cohérents avec structure parabolique et la construction des faisceaux ayant la proprieté de Hecke relativement à certains systèmes locaux ramifiés]
Annales de l'Institut Fourier, Tome 54 (2004) no. 7, pp. 2235-2325.

L’objectif de ces notes est de généraliser la construction de Laumon [20] des faisceaux automorphes correspondant aux systèmes locaux sur une courbe projective, lisse C aux cas des systèmes locaux ayant une ramification unipotente indécomposable en un nombre fini de points. Dans ce but, il est nécessaire d’étendre aux faisceaux cohérents la notion de structure parabolique des fibrés vectoriels. Une fois ceci défini, beaucoup d’arguments de l’article “On the geometric Langlands conjecture” de Frenkel, Gaitsgory et Vilonen [11] se transposent à notre situation. Nous montrons que nos faisceaux se descendent sur l’espace de modules des fibrés paraboliques si le rang est 3 et que le cas général peut se déduire d’une généralisation de la conjecture d’annulation de [11]

The aim of these notes is to generalize Laumon’s construction [20] of automorphic sheaves corresponding to local systems on a smooth, projective curve C to the case of local systems with indecomposable unipotent ramification at a finite set of points. To this end we need an extension of the notion of parabolic structure on vector bundles to coherent sheaves. Once we have defined this, a lot of arguments from the article “ On the geometric Langlands conjecture” by Frenkel, Gaitsgory and Vilonen [11] carry over to our situation. We show that our sheaves descend to the moduli space of parabolic bundles if the rank is 3 and that the general case can be deduced form a generalization of the vanishing conjecture of [11]

DOI : 10.5802/aif.2080
Classification : 11R39, 11F70, 14H60, 22E55
Keywords: parabolic vector bundles, automorphic sheaves, geometric Langlands correspondence
Mot clés : fibrés vectoriels paraboliques, faisceaux automorphes, correspondance de Langlands géométrique
Heinloth, Jochen 1

1 Universität Göttingen, Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen (Allemagne)
@article{AIF_2004__54_7_2235_0,
     author = {Heinloth, Jochen},
     title = {Coherent sheaves with parabolic structure and construction of {Hecke} eigensheaves for some ramified local systems},
     journal = {Annales de l'Institut Fourier},
     pages = {2235--2325},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {7},
     year = {2004},
     doi = {10.5802/aif.2080},
     mrnumber = {2139694},
     zbl = {1137.11347},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2080/}
}
TY  - JOUR
AU  - Heinloth, Jochen
TI  - Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 2235
EP  - 2325
VL  - 54
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2080/
DO  - 10.5802/aif.2080
LA  - en
ID  - AIF_2004__54_7_2235_0
ER  - 
%0 Journal Article
%A Heinloth, Jochen
%T Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems
%J Annales de l'Institut Fourier
%D 2004
%P 2235-2325
%V 54
%N 7
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2080/
%R 10.5802/aif.2080
%G en
%F AIF_2004__54_7_2235_0
Heinloth, Jochen. Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems. Annales de l'Institut Fourier, Tome 54 (2004) no. 7, pp. 2235-2325. doi : 10.5802/aif.2080. http://www.numdam.org/articles/10.5802/aif.2080/

[1] D. Abramovich; A. Corti; A. Vistoli Twisted bundles and admissible covers, Comm. Algebra, Volume 31 (2003), pp. 3547-3618 | DOI | MR | Zbl

[2] M. Artin; A. Grothendieck; J.-L. Verdier SGA 4: Théorie des topos et cohomologie étale des schémas, t. 3, Springer-Verlag, 1973 | MR

[3] K. Behrend; B. Fantechi The intrinsic normal cone, Invent. Math., Volume 128 (1997), pp. 45-88 | DOI | MR | Zbl

[4] A.A. Beilinson; J. Bernstein; P. Deligne Faisceaux pervers, Astérisque 100 (1983) | MR | Zbl

[5] A. Borel Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math., Volume 35 (1976), pp. 233-259 | DOI | MR | Zbl

[6] J.-L. Brylinski Transformations canoniques, dualité projective, théorie de Lefschetz, transformation de Fourier et sommes trigonométriques, Astérisque, Volume 140-141 (1986), pp. 3-134 | Numdam | MR | Zbl

[7] P. Deligne La conjecture de Weil II, Publ. Math. IHÉS, Volume 52 (1980), pp. 137-252 | Numdam | MR | Zbl

[8] V.G. Drinfeld Two-dimensional -adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2), Amer. J. Math., Volume 105 (1983), pp. 85-114 | DOI | MR | Zbl

[9] V.G. Drinfeld Two-dimensional -adic representations of the galois group of a global field of characteristic p and automorphic forms on GL(2), J. Sov. Math., Volume 36 (1987), pp. 93-105 | DOI | Zbl

[10] E. Frenkel; D. Gaitsgory; D. Kazhdan; K. Vilonen Geometric realization of Whittaker functions and the geometric Langlands conjecture, J. Amer. Math. Soc., Volume 11 (1998), pp. 451-484 | DOI | MR | Zbl

[11] E. Frenkel; D. Gaitsgory; K. Vilonen. On the geometric Langlands conjecture, J. Amer. Math. Soc., Volume 15 (2002), pp. 367-417 | DOI | MR | Zbl

[12] W. Fulton; J. Harris Representation Theory - A First Course, Graduate Texts in Mathematics, 129, Springer-Verlag, 1991 | MR | Zbl

[13] D. Gaitsgory On a vanishing conjecture appearing in the geometric Langlands correspondence (e-print, arXiv:math.AG/0204081) | Zbl

[14] M. Goresky; R. MacPherson Intersection homology II, Invent. Math., Volume 72 (1983), pp. 77-129 | DOI | MR | Zbl

[15] A. Grothendieck Technique de descente et théorèmes d'existence en géométrie algébrique. IV: Les schémas de Hilbert, Séminaire Bourbaki, Volume 13 (1960), pp. 1-221 | Numdam | Zbl

[16] A. Grothendieck Eléments de Géométrie Algébrique III : Étude cohomologique des faisceaux cohérents, Publ. Math. IHÉS, Volume 11 (1961) | Numdam | Zbl

[16] A. Grothendieck Eléments de Géométrie Algébrique III : Etude cohomologique des faisceaux cohérents, Publ. Math. IHES, Volume 17 (1963) | Numdam | Zbl

[17] A. Grothendieck SGA 5 : Cohomologie -adique et fonctions L, Springer-Verlag, 1977 | MR | Zbl

[18] L. Lafforgue Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002), pp. 1-241 | DOI | MR | Zbl

[19] G. Laumon Faisceaux automorphes pour GL ( n) : la première construction de Drinfeld (e-print, arXiv:alg-geom/9511004)

[20] G. Laumon Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J., Volume 54 (1987), pp. 309-359 | MR | Zbl

[21] G. Laumon Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Publ. Math. IHÉS, Volume 65 (1987), pp. 131-210 | Numdam | MR | Zbl

[22] G. Laumon Cohomology of Drinfeld modular varieties II, Cambridge University Press, 1997 | MR | Zbl

[23] G. Laumon Travaux de Frenkel, Gaitsgory et Vilonen sur la correspondance de Drinfeld-Langlands, Séminaire Bourbaki, Volume 290 (2002) | Numdam | MR | Zbl

[24] G. Laumon; L. Moret-Bailly Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Springer-Verlag, 2000 | MR | Zbl

[25] J.A. Shalika The multiplicity one theorem for GL n , Ann. of Math., Volume 100 (1974), pp. 171-193 | DOI | MR | Zbl

Cité par Sources :