Nous établissons la classification homotopique des submersions holomorphes d'une variété de Stein sur une variété complexe satisfaisant une proprieté analytique introduite dans l'article. Le résultat est analogue au théorème de Gromov-Phillips sur les submersions lisses.
We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.
Keywords: Stein manifolds, holomorphic submersions, Oka principle
Mot clés : variétés de Stein, submersions holomorphes, principe d'Oka
@article{AIF_2004__54_6_1913_0, author = {Forstneri\v{c}, Franc}, title = {Holomorphic submersions from {Stein} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1913--1942}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {6}, year = {2004}, doi = {10.5802/aif.2071}, mrnumber = {2134229}, zbl = {1093.32003}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2071/} }
TY - JOUR AU - Forstnerič, Franc TI - Holomorphic submersions from Stein manifolds JO - Annales de l'Institut Fourier PY - 2004 SP - 1913 EP - 1942 VL - 54 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2071/ DO - 10.5802/aif.2071 LA - en ID - AIF_2004__54_6_1913_0 ER -
%0 Journal Article %A Forstnerič, Franc %T Holomorphic submersions from Stein manifolds %J Annales de l'Institut Fourier %D 2004 %P 1913-1942 %V 54 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2071/ %R 10.5802/aif.2071 %G en %F AIF_2004__54_6_1913_0
Forstnerič, Franc. Holomorphic submersions from Stein manifolds. Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1913-1942. doi : 10.5802/aif.2071. http://www.numdam.org/articles/10.5802/aif.2071/
[A] Transversality in manifolds of mappings., Bull. Amer. Math. Soc., Volume 69 (1963), pp. 470-474 | MR | Zbl
[B] Compact Complex Surfaces, Springer, Berlin--Heidelberg--New Zork--Tokyo, 1984 | MR | Zbl
[De] Cohomology of -convex spaces in top degrees, Math. Z., Volume 204 (1990), pp. 283-295 | MR | Zbl
[DG] Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. (German), Math. Ann., Volume 140 (1960), pp. 94-123 | MR | Zbl
[E] Topological characterization of Stein manifolds of dimension , Internat. J. Math, Volume 1 (1990), pp. 29-46 | MR | Zbl
[EM] Introduction to the -principle, Graduate Studies in Math, 48, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[F1] Noncritical holomorphic functions on Stein manifolds, Acta Math., Volume 191 (2003), pp. 143-189 | MR | Zbl
[F2] The homotopy principle in complex analysis: A survey, Explorations in Complex and Riemannian Geometry: A Volume dedicated to Robert E. Greene (Contemporary Mathematics), Volume 332 (2003), pp. 73-99 | Zbl
[F3] The Oka principle for sections of subelliptic submersions, Math. Z., Volume 241 (2002), pp. 527-551 | MR | Zbl
[F4] Runge approximation on convex sets implies the Oka property (February 2004) (e-print, arXiv: math.CV/0402278)
[FK] Strongly pseudoconvex handlebodies., J. Korean Math. Soc., Volume 40 (2003), pp. 727-746 | MR | Zbl
[FLØ] Solving the - and -equations in thin tubes and applications to mappings., Michigan Math. J., Volume 49 (2001), pp. 369-416 | MR | Zbl
[Fo] Plongements des variétés de Stein, Comment. Math. Helv, Volume 45 (1970), pp. 170-184 | MR | Zbl
[FP1] Oka's principle for holomorphic fiber bundles with sprays., Math. Ann., Volume 317 (2000), pp. 117-154 | MR | Zbl
[FP2] Oka's principle for holomorphic submersions with sprays., Math. Ann., Volume 322 (2002), pp. 633-666 | MR | Zbl
[FP3] Extending holomorphic sections from complex subvarieties., Math. Z., Volume 236 (2001), pp. 43-68 | MR | Zbl
[FR] Approximation of biholomorphic mappings by automorphisms of ., Invent. Math., Volume 112 (1993), pp. 323-349 | MR | Zbl
[FR] Approximation of biholomorphic mappings by automorphisms of , Invent. Math. (Erratum), Volume 118 (1994), pp. 573-574 | MR | Zbl
[G1] Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen., Math. Ann., Volume 133 (1957), pp. 139-159 | MR | Zbl
[G2] Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen., Math. Ann., Volume 133 (1957), pp. 450-472 | MR | Zbl
[G3] Analytische Faserungen über holomorph-vollständigen Räumen., Math. Ann., Volume 135 (1958), pp. 263-273 | MR | Zbl
[GN] Immersion of open Riemann surfaces., Math. Ann., Volume 174 (1967), pp. 103-108 | MR | Zbl
[GR] Analytic functions of several complex variables., Prentice--Hall, Englewood Cliffs, 1965 | MR | Zbl
[Gr1] Stable maps of foliations into manifolds., Izv. Akad. Nauk, S.S.S.R, Volume 33 (1969), pp. 707-734 | MR | Zbl
[Gr2] Convex integration of differential relations, I, Izv. Akad. Nauk SSSR Ser. Mat (Russian), Volume 37 (1973), pp. 329-343 | MR | Zbl
[Gr2] Convex integration of differential relations, I, Math. USSR--Izv. (English translation), Volume 7 (1973), pp. 329-343 | MR | Zbl
[Gr3] Partial Differential Relations., Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 9, Springer, Berlin--New York, 1986 | MR | Zbl
[Gr4] Oka's principle for holomorphic sections of elliptic bundles., J. Amer. Math. Soc., Volume 2 (1989), pp. 851-897 | MR | Zbl
[HL1] Andreotti-Grauert Theory by Integral Formulas., Progress in Math., 74, Birkhäuser, Boston, 1988 | MR | Zbl
[HL2] The Oka-Grauert principle without induction over the basis dimension., Math. Ann., Volume 311 (1998), pp. 71-93 | MR | Zbl
[Hö1] estimates and existence theorems for the operator., Acta Math., Volume 113 (1965), pp. 89-152 | MR | Zbl
[Hö2] An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1990 | MR | Zbl
[HW] Uniform approximations on compact sets in ., Math. Scand, Volume 23 (1968), pp. 5-21 | MR | Zbl
[O] Sur les fonctions des plusieurs variables. III: Deuxième problème de Cousin., J. Sc. Hiroshima Univ., Volume 9 (1939), pp. 7-19 | JFM | Zbl
[P] Submersions of open manifolds., Topology, Volume 6 (1967), pp. 170-206 | MR | Zbl
[Ro] A counterexample related to Hartog's phenomenon (a question by E.\ Chirka)., Michigan Math. J., Volume 45 (1998), pp. 529-535 | MR | Zbl
[RS] approximation by holomorphic functions and -closed forms on submanifolds of a complex manifold., Math. Ann., Volume 210 (1974), pp. 105-122 | MR | Zbl
[S] Every Stein subvariety admits a Stein neighborhood., Invent. Math., Volume 38 (1976), pp. 89-100 | MR | Zbl
[W] The Oka-principle for mappings between Riemann surfaces., Enseign. Math. (2), Volume 39 (1993), pp. 143-151 | MR | Zbl
Cité par Sources :