On analyse l’équation de «Korteweg-de Vries modifiée» sur un intervalle borné
We analyse an initial-boundary value problem for the mKdV equation on a finite interval
@article{AIF_2004__54_5_1477_0, author = {Boutet de Monvel, Anne and Shepelsky, Dmitry}, title = {Initial boundary value problem for the {mKdV} equation on a finite interval}, journal = {Annales de l'Institut Fourier}, pages = {1477--1495}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {5}, year = {2004}, doi = {10.5802/aif.2056}, mrnumber = {2127855}, zbl = {02162431}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2056/} }
TY - JOUR AU - Boutet de Monvel, Anne AU - Shepelsky, Dmitry TI - Initial boundary value problem for the mKdV equation on a finite interval JO - Annales de l'Institut Fourier PY - 2004 SP - 1477 EP - 1495 VL - 54 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2056/ DO - 10.5802/aif.2056 LA - en ID - AIF_2004__54_5_1477_0 ER -
%0 Journal Article %A Boutet de Monvel, Anne %A Shepelsky, Dmitry %T Initial boundary value problem for the mKdV equation on a finite interval %J Annales de l'Institut Fourier %D 2004 %P 1477-1495 %V 54 %N 5 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2056/ %R 10.5802/aif.2056 %G en %F AIF_2004__54_5_1477_0
Boutet de Monvel, Anne; Shepelsky, Dmitry. Initial boundary value problem for the mKdV equation on a finite interval. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1477-1495. doi : 10.5802/aif.2056. https://www.numdam.org/articles/10.5802/aif.2056/
[1] The mKdV equation on the half-line, J. Inst. Math. Jussieu 3 (2004) p. 139-164 | MR | Zbl
, & ,[2] Analysis of the global relation for the nonlinear Schrödinger equation on the half-line, Lett. Math. Phys 65 (2003) p. 199-212 | MR | Zbl
, & ,[3] The modified KdV equation on a finite interval, C. R. Math. Acad. Sci. Paris 337 (2003) p. 517-522 | MR | Zbl
& ,[4] A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London, Ser. A 453 (1997) p. 1411-1443 | MR | Zbl
,[5] On the integrability of linear and nonlinear partial differential equations, J. Math. Phys 41 (2000) p. 4188-4237 | MR | Zbl
,[6] Two dimensional linear PDEs in a convex polygon, Proc. Roy. Soc. London, Ser. A 457 (2001) p. 371-393 | MR | Zbl
,[7] Integrable nonlinear evolution equations on the half-line, Commun. Math. Phys 230 (2002) p. 1-39 | MR | Zbl
,[8] The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal 27 (1996) p. 738-764 | MR | Zbl
& ,[9] The nonlinear Schrödinger equation on the interval, Preprint | MR | Zbl
& ,[10] The nonlinear Schrödinger equation on the half-line, Preprint | MR | Zbl
, & ,[12] The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal 20 (1989) p. 966-986 | MR | Zbl
,[13] Inverse scattering transform for systems with rational spectral dependence, J. Differential Equations 115 (1995) p. 277-303 | MR | Zbl
,[11] A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974) p. 226-235 | Zbl
& ,[<L>11</L>] A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering. II, Funct. Anal. Appl. 13 (1979) p. 166-174 | Zbl
& ,- Soliton resolution and asymptotic stability of N-soliton solutions for the defocusing mKdV equation with a non-vanishing background, Physica D: Nonlinear Phenomena, Volume 472 (2025), p. 134526 | DOI:10.1016/j.physd.2025.134526
- Initial Boundary Value Problem for the Coupled Kundu Equations on the Half-Line, Axioms, Volume 13 (2024) no. 9, p. 579 | DOI:10.3390/axioms13090579
- The Riemann–Hilbert Approach to the Higher-Order Gerdjikov–Ivanov Equation on the Half Line, Symmetry, Volume 16 (2024) no. 10, p. 1258 | DOI:10.3390/sym16101258
- The linear Lugiato–Lefever equation with forcing and nonzero periodic or nonperiodic boundary conditions, Involve, a Journal of Mathematics, Volume 16 (2023) no. 5, p. 783 | DOI:10.2140/involve.2023.16.783
- Two-component complex modified Korteweg–de Vries equations: New soliton solutions from novel binary Darboux transformation, Theoretical and Mathematical Physics, Volume 214 (2023) no. 2, p. 183 | DOI:10.1134/s0040577923020034
- Двухкомпонентное комплексное модифицированное уравнение Кортевега-де Фриза: новые солитонные решения, получающиеся из нового бинарного преобразования Дарбу, Теоретическая и математическая физика, Volume 214 (2023) no. 2, p. 211 | DOI:10.4213/tmf10314
- The unified transform method to the high-order nonlinear Schrödinger equation with periodic initial condition, Communications in Theoretical Physics, Volume 74 (2022) no. 8, p. 085001 | DOI:10.1088/1572-9494/ac7a23
- A Necessary and Sufficient Condition for the Solvability of the Nonlinear Schrödinger Equation on a Finite Interval, Acta Mathematicae Applicatae Sinica, English Series, Volume 37 (2021) no. 1, p. 75 | DOI:10.1007/s10255-021-0994-z
- Explicit Soliton Asymptotics for the Nonlinear Schrödinger Equation on the Half-Line, Journal of Nonlinear Mathematical Physics, Volume 17 (2021) no. 4, p. 445 | DOI:10.1142/s1402925110000994
- Initial-Boundary Value Problems for Nonlinear Dispersive Equations of Higher Orders Posed on Bounded Intervals with General Boundary Conditions, Mathematics, Volume 9 (2021) no. 2, p. 165 | DOI:10.3390/math9020165
- Asymptotic stage of modulation instability for the nonlocal nonlinear Schrödinger equation, Physica D: Nonlinear Phenomena, Volume 428 (2021), p. 133060 | DOI:10.1016/j.physd.2021.133060
- Initial-boundary value problem for the spin-1 Gross-Pitaevskii system with a 4 × 4 Lax pair on a finite interval, Journal of Mathematical Physics, Volume 60 (2019) no. 8 | DOI:10.1063/1.5058722
- A Riemann–Hilbert Approach to Complex Sharma–Tasso–Olver Equation on Half Line *, Communications in Theoretical Physics, Volume 68 (2017) no. 5, p. 580 | DOI:10.1088/0253-6102/68/5/580
- Initial‐Boundary Value Problems for the Coupled Nonlinear Schrödinger Equation on the Half‐Line, Studies in Applied Mathematics, Volume 135 (2015) no. 3, p. 310 | DOI:10.1111/sapm.12088
- A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equation, Acta Mathematica Scientia, Volume 34 (2014) no. 4, p. 973 | DOI:10.1016/s0252-9602(14)60063-1
- Initial-boundary value problems for integrable evolution equations with 3×3 Lax pairs, Physica D: Nonlinear Phenomena, Volume 241 (2012) no. 8, p. 857 | DOI:10.1016/j.physd.2012.01.010
- The Korteweg–de Vries equation on the interval, Journal of Mathematical Physics, Volume 51 (2010) no. 8 | DOI:10.1063/1.3474914
- Initial boundary value problems for integrable systems: towards the long time asymptotics, Nonlinearity, Volume 23 (2010) no. 10, p. 2483 | DOI:10.1088/0951-7715/23/10/007
- The Heat Equation in the Interior of an Equilateral Triangle, Studies in Applied Mathematics, Volume 124 (2010) no. 3, p. 283 | DOI:10.1111/j.1467-9590.2009.00471.x
- Riemann–Hilbert formulation for the KdV equation on a finite interval, Comptes Rendus. Mathématique, Volume 347 (2009) no. 5-6, p. 261 | DOI:10.1016/j.crma.2009.01.012
- Decaying Long-Time Asymptotics for the Focusing NLS Equation with Periodic Boundary Condition, International Mathematics Research Notices (2008) | DOI:10.1093/imrn/rnn139
- The Camassa–Holm Equation on the Half-Line: a Riemann–Hilbert Approach, Journal of Geometric Analysis, Volume 18 (2008) no. 2, p. 285 | DOI:10.1007/s12220-008-9014-2
- Boundary value problems for the stationary Kawahara equation, Nonlinear Analysis: Theory, Methods Applications, Volume 69 (2008) no. 5-6, p. 1655 | DOI:10.1016/j.na.2007.07.005
- KdV equation in domains with moving boundaries, Journal of Mathematical Analysis and Applications, Volume 328 (2007) no. 1, p. 503 | DOI:10.1016/j.jmaa.2006.05.057
- Integrable Nonlinear Evolution Equations on a Finite Interval, Communications in Mathematical Physics, Volume 263 (2006) no. 1, p. 133 | DOI:10.1007/s00220-005-1495-2
- The Camassa–Holm equation on the half-line, Comptes Rendus. Mathématique, Volume 341 (2005) no. 10, p. 611 | DOI:10.1016/j.crma.2005.09.035
Cité par 26 documents. Sources : Crossref