Nous donnons des conditions nécessaires et suffisantes sur le potentiel
We establish necessary and sufficient conditions on the real- or complex-valued potential
Keywords: relativistic Schrödinger operator, complex-valued potentials, Sobolev spaces
Mot clés : opérateur de Schrödinger relativiste, potentiels à valeurs complexes, espaces de Sobolev
@article{AIF_2004__54_2_317_0, author = {Maz'ya, Vladimir and Verbitsky, Igor}, title = {The form boundedness criterion for the relativistic {Schr\"odinger} operator}, journal = {Annales de l'Institut Fourier}, pages = {317--339}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {2}, year = {2004}, doi = {10.5802/aif.2020}, zbl = {02123569}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2020/} }
TY - JOUR AU - Maz'ya, Vladimir AU - Verbitsky, Igor TI - The form boundedness criterion for the relativistic Schrödinger operator JO - Annales de l'Institut Fourier PY - 2004 SP - 317 EP - 339 VL - 54 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2020/ DO - 10.5802/aif.2020 LA - en ID - AIF_2004__54_2_317_0 ER -
%0 Journal Article %A Maz'ya, Vladimir %A Verbitsky, Igor %T The form boundedness criterion for the relativistic Schrödinger operator %J Annales de l'Institut Fourier %D 2004 %P 317-339 %V 54 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2020/ %R 10.5802/aif.2020 %G en %F AIF_2004__54_2_317_0
Maz'ya, Vladimir; Verbitsky, Igor. The form boundedness criterion for the relativistic Schrödinger operator. Annales de l'Institut Fourier, Tome 54 (2004) no. 2, pp. 317-339. doi : 10.5802/aif.2020. https://www.numdam.org/articles/10.5802/aif.2020/
[AiS] Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math, Volume 35 (1982), pp. 209-273 | MR | Zbl
[ChWW] Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv, Volume 60 (1985), pp. 217-246 | MR | Zbl
[CoG] Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials, Ann. Inst. Henri Poincaré, Sec. A, Physique théorique, Volume 24 (1976), pp. 17-29 | Numdam | MR | Zbl
[EE] Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987 | MR | Zbl
[Fef] The uncertainty principle, Bull. Amer. Math. Soc, Volume 9 (1983), pp. 129-206 | MR | Zbl
[KeS] The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier, Grenoble, Volume 36 (1987), pp. 207-228 | Numdam | MR | Zbl
[KWh] Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc, Volume 255 (1979), pp. 343-362 | MR | Zbl
[LL] Analysis, Amer. Math. Soc., Providence, RI, 2001 | Zbl
[M1] On the theory of the
[M2] Sobolev Spaces, Springer-Verlag, Berlin--Heidelberg--New York, 1985 | MR | Zbl
[MSh] Theory of Multipliers in Spaces of Differentiable Functions, Monographs and Studies in Mathematics, 23, Pitman, Boston--London, 1985 | MR | Zbl
[MV1] Capacitary estimates for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Arkiv för Matem, Volume 33 (1995), pp. 81-115 | MR | Zbl
[MV2] The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math, Volume 188 (2002), pp. 263-302 | MR | Zbl
[MV3] Boundedness and compactness criteria for the one-dimensional Schrödinger operator, Function Spaces, Interpolation Theory and Related Topics (Proc. Jaak Peetre Conf. (Lund, Sweden, August 17-22, 2000)) (2002), pp. 369-382 | MR | Zbl
[Nel] Topics in Dynamics. I: Flows, Princeton University Press, Princeton, New Jersey, 1969 | MR | Zbl
[RS] Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York--London, 1975 | MR | Zbl
[Sch] Operator Methods in Quantum Mechanics, North-Holland, Amsterdam -- New York -- Oxford, 1981 | MR | Zbl
[Sim] Schrödinger semigroups, Bull. Amer. Math. Soc, Volume 7 (1982), pp. 447-526 | MR | Zbl
[St1] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970 | MR | Zbl
[St2] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 1993 | MR | Zbl
[Ver] Nonlinear potentials and trace inequalities, Operator Theory: Advances and Applications (The Maz'ya Anniversary Collection), Volume 110 (1999), pp. 323-343 | MR | Zbl
- Optimal Hardy Inequality for Fractional Laplacians on the Integers, Annales Henri Poincaré, Volume 24 (2023) no. 8, p. 2729 | DOI:10.1007/s00023-023-01307-z
- Solvability in the Sense of Sequences for Some Non-Fredholm Operators Related to the Double Scale Anomalous Diffusion in Higher Dimensions, New Perspectives on Nonlinear Dynamics and Complexity, Volume 35 (2023), p. 153 | DOI:10.1007/978-3-030-97328-5_10
- Solvability of some integro-differential equations with anomalous diffusion in higher dimensions, Complex Variables and Elliptic Equations, Volume 66 (2021) no. 1, p. 165 | DOI:10.1080/17476933.2019.1709970
- Bilinear forms on non-homogeneous Sobolev spaces, Forum Mathematicum, Volume 32 (2020) no. 4, p. 995 | DOI:10.1515/forum-2019-0311
- On Solvability in the Sense of Sequences for some Non-Fredholm Operators in Higher Dimensions, Journal of Mathematical Sciences, Volume 247 (2020) no. 6, p. 850 | DOI:10.1007/s10958-020-04841-x
- On Solvability in the Sense of Sequences for some Non-Fredholm Operators with Drift and Anomalous Diffusion, Journal of Mathematical Sciences, Volume 250 (2020) no. 2, p. 285 | DOI:10.1007/s10958-020-05015-5
- Bilinear forms on potential spaces in the unit circle, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 150 (2020) no. 4, p. 2117 | DOI:10.1017/prm.2019.16
- Accretivity of the General Second Order Linear Differential Operator, Acta Mathematica Sinica, English Series, Volume 35 (2019) no. 6, p. 832 | DOI:10.1007/s10114-019-8127-9
- Bilinear forms on homogeneous Sobolev spaces, Journal of Mathematical Analysis and Applications, Volume 457 (2018) no. 1, p. 722 | DOI:10.1016/j.jmaa.2017.08.033
- Characterization of spaces of multipliers for Bessel potential spaces, Mathematical Notes, Volume 96 (2014) no. 5-6, p. 634 | DOI:10.1134/s0001434614110029
- CHARACTERIZATION OF THE MULTIPLIERS FROM ḢrTO Ḣ-r, Bulletin of the Korean Mathematical Society, Volume 50 (2013) no. 3, p. 915 | DOI:10.4134/bkms.2013.50.3.915
- A Regularity Criterion for the Navier‐Stokes Equations in the Multiplier Spaces, Abstract and Applied Analysis, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/682436
- A NEW CONTINUATION PRINCIPLE FOR THE NAVIER–STOKES EQUATIONS, Asian-European Journal of Mathematics, Volume 04 (2011) no. 04, p. 605 | DOI:10.1142/s1793557111000472
- Non-linear ground state representations and sharp Hardy inequalities, Journal of Functional Analysis, Volume 255 (2008) no. 12, p. 3407 | DOI:10.1016/j.jfa.2008.05.015
- Remarques sur l'unicité pour le système de Navier–Stokes tridimensionnel, Comptes Rendus. Mathématique, Volume 344 (2007) no. 6, p. 363 | DOI:10.1016/j.crma.2007.01.014
- Form boundedness of the general second‐order differential Operator, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 9, p. 1286 | DOI:10.1002/cpa.20122
- Multipliers, paramultipliers, and weak–strong uniqueness for the Navier–Stokes equations, Journal of Differential Equations, Volume 226 (2006) no. 2, p. 373 | DOI:10.1016/j.jde.2005.10.007
- Multipliers between Sobolev spaces and fractional differentiation, Journal of Mathematical Analysis and Applications, Volume 322 (2006) no. 2, p. 1030 | DOI:10.1016/j.jmaa.2005.07.043
- Strongly elliptic operators with singular coefficients, Russian Journal of Mathematical Physics, Volume 13 (2006) no. 1, p. 70 | DOI:10.1134/s1061920806010079
- Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Inventiones mathematicae, Volume 162 (2005) no. 1, p. 81 | DOI:10.1007/s00222-005-0439-y
Cité par 20 documents. Sources : Crossref