On étudie les clôtures au sens de Zariski des orbites de représentations des carquois de
type
We study the Zariski closures of orbits of representations of quivers of type
Keywords: quantum groups, representations of quivers, singularities, canonical basis
Mot clés : groupes quantiques, representations de carquois, singularites, base canonique
@article{AIF_2004__54_2_295_0, author = {Caldero, Philippe and Schiffler, Ralf}, title = {Rational smoothness of varieties of representations for quivers of {Dynkin} type}, journal = {Annales de l'Institut Fourier}, pages = {295--315}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {2}, year = {2004}, doi = {10.5802/aif.2019}, zbl = {02123568}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2019/} }
TY - JOUR AU - Caldero, Philippe AU - Schiffler, Ralf TI - Rational smoothness of varieties of representations for quivers of Dynkin type JO - Annales de l'Institut Fourier PY - 2004 SP - 295 EP - 315 VL - 54 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2019/ DO - 10.5802/aif.2019 LA - en ID - AIF_2004__54_2_295_0 ER -
%0 Journal Article %A Caldero, Philippe %A Schiffler, Ralf %T Rational smoothness of varieties of representations for quivers of Dynkin type %J Annales de l'Institut Fourier %D 2004 %P 295-315 %V 54 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2019/ %R 10.5802/aif.2019 %G en %F AIF_2004__54_2_295_0
Caldero, Philippe; Schiffler, Ralf. Rational smoothness of varieties of representations for quivers of Dynkin type. Annales de l'Institut Fourier, Tome 54 (2004) no. 2, pp. 295-315. doi : 10.5802/aif.2019. https://www.numdam.org/articles/10.5802/aif.2019/
[BL] Singular loci of schubert varieties, Progress in Math, 182, Birkhäuser, Boston-Basel-Berlin, 2000 | MR | Zbl
[BM] Partial resolutions of nilpotent varieties, Analyse et topologie sur les espaces singuliers II (Astérisque), Volume 101-102 (1983), pp. 23-74 | Numdam | MR | Zbl
[Bon95] Degenerations for representations of tame quivers, Annales Scientifiques de L'école Normale Supérieure (IV), Volume 28 (1995), pp. 647-668 | Numdam | MR | Zbl
[Bri98] Equivariant cohomology and equivariant intersection theory, Representation Theory and Algebraic geometry (1998), pp. 1-37 | MR | Zbl
[BS] Rational smoothness of varieties of representations for quivers of type
[Cal] A multiplicative property of quantum flag minors, Representation Theory, Volume 7 (2003), pp. 164-176 | MR | Zbl
[Car94] The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations (1994), pp. 53-62 | MR | Zbl
[Dan96] Cohomology of algebraic varieties, ch. Algebraic geometry II (Encyclopedia of Math. Sciences) (1996), pp. 1-125 | MR | Zbl
[Deo85] Local Poincaré duality and nonsingularities of Schubert varieties, Comm. Alg, Volume 13 (1985), pp. 1379-1388 | MR | Zbl
[Gre95] Hall algebras, hereditary algebras and quantum groups, Invent. Math, Volume 120 (1995), pp. 361-377 | MR | Zbl
[Kas91] On crystal bases of the
[Lus90a] Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc, Volume 3 (1990), pp. 447-498 | MR | Zbl
[Lus90b] Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc, Volume 3 (1990), pp. 257-296 | MR | Zbl
[Lus93] Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser, 1993 | MR | Zbl
[Nör] From elementary calculations to Hall polynomials (preprint) | MR | Zbl
[Rei99] Multiplicative properties of dual canonical bases of quantum groups, Journal of Algebra, Volume 211 (1999), pp. 134-149 | MR | Zbl
[Rie94] Lie algebras generated by indecomposables, Journal of algebra, Volume 170 (1994), pp. 526-546 | MR | Zbl
[Rin90] Hall algebras, Banach Center Publ, Volume 26 (1990), pp. 433-447 | MR | Zbl
[Rin93] Hall algebras revisited (Israel Math. Conf. Proc), Volume 7 (1993), pp. 171-176 | MR | Zbl
- From triangulated categories to cluster algebras, Inventiones mathematicae, Volume 172 (2008) no. 1, p. 169 | DOI:10.1007/s00222-008-0111-4
Cité par 1 document. Sources : Crossref