Dans un précédent article, nous avons donné des formules asymptotiques pour le nombre de
classes d’isomorphismes d’extensions
In a previous paper, we have given asymptotic formulas for the number of isomorphism
classes of
Keywords: discriminant counting, genus character, quartic reciprocity
Mot clés : discriminant croissant, caractère de genre, réciprocité quartique
@article{AIF_2003__53_2_339_0, author = {Cohen, Henri}, title = {Enumerating quartic dihedral extensions of ${\mathbb {Q}}$ with signatures}, journal = {Annales de l'Institut Fourier}, pages = {339--377}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1946}, mrnumber = {1990000}, zbl = {01940698}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1946/} }
TY - JOUR AU - Cohen, Henri TI - Enumerating quartic dihedral extensions of ${\mathbb {Q}}$ with signatures JO - Annales de l'Institut Fourier PY - 2003 SP - 339 EP - 377 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1946/ DO - 10.5802/aif.1946 LA - en ID - AIF_2003__53_2_339_0 ER -
%0 Journal Article %A Cohen, Henri %T Enumerating quartic dihedral extensions of ${\mathbb {Q}}$ with signatures %J Annales de l'Institut Fourier %D 2003 %P 339-377 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1946/ %R 10.5802/aif.1946 %G en %F AIF_2003__53_2_339_0
Cohen, Henri. Enumerating quartic dihedral extensions of ${\mathbb {Q}}$ with signatures. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 339-377. doi : 10.5802/aif.1946. https://www.numdam.org/articles/10.5802/aif.1946/
[1] Higher Composition Laws (June 2001) (PhD Thesis, Princeton Univ.)
[2] A Course in Computational Algebraic Number Theory (fourth corrected printing), Graduate Texts in Math, 138, Springer-Verlag, 2000 | MR | Zbl
[3] Comptage exact de discriminants d'extensions abéliennes, J. Th. Nombres Bordeaux, Volume 12 (2000), pp. 379-397 | DOI | Numdam | MR | Zbl
[4] Counting discriminants of number fields (preprint)
[5] Construction of tables of quartic fields using Kummer theory, Proceedings ANTS IV, Leiden (2000) (Lecture Notes in Computer Science), Volume 1838 (2000), pp. 257-268 | Zbl
[6] Counting discriminants of number fields of degree up to four, Proceedings ANTS IV, Leiden (2000) (Lecture Notes in Computer Science), Volume 1838 (2000), pp. 269-283 | Zbl
[7] Enumerating quartic dihedral extensions of
[8] Densité des discriminants des extensions cycliques de degré premier, C.R. Acad. Sci. Paris, Volume 330 (2000), pp. 61-66 | MR | Zbl
[9] On the Density of Discriminants of Cyclic Extensions of Prime Degree, J. reine angew. Math, Volume 550 (2002), pp. 169-209 | DOI | MR | Zbl
[10] Density of discriminants of cubic extensions, J. reine angew. Math, Volume 386 (1988), pp. 116-138 | DOI | EuDML | MR | Zbl
[11] On the density of discriminants of cubic fields I, Bull. London Math. Soc, Volume 1 (1969), pp. 345-348 | DOI | MR | Zbl
[12] On the density of discriminants of cubic fields II, Proc. Royal. Soc. A, Volume 322 (1971), pp. 405-420 | DOI | MR | Zbl
[13] Reciprocity laws, Springer Monographs in Math., Springer-Verlag, 2000 | MR | Zbl
[14] On the density of abelian number fields (1985) (Thesis, Helsinki) | MR | Zbl
[15] The conductor density of abelian number fields, J. London Math. Soc, Volume 47 (1993) no. 2, pp. 18-30 | DOI | MR | Zbl
[16] Distribution of discriminants of abelian extensions, Proc. London Math. Soc, Volume 58 (1989) no. 3, pp. 17-50 | DOI | MR | Zbl
[17] Prehomogeneous vector spaces and field extensions, Invent. Math, Volume 110 (1992), pp. 283-314 | DOI | EuDML | MR | Zbl
[18] Density theorems related to prehomogeneous vector spaces (preprint) | MR | Zbl
- Monogenic dihedral quartic extensions, The Ramanujan Journal, Volume 50 (2019) no. 2, pp. 459-464 | DOI:10.1007/s11139-018-0049-0 | Zbl:1462.11104
- On the Colmez conjecture for non-abelian CM fields, Research in the Mathematical Sciences, Volume 5 (2018) no. 1, p. 41 (Id/No 10) | DOI:10.1007/s40687-018-0119-3 | Zbl:1441.11159
- The number of ramified primes in number fields of small degree, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 8, pp. 3201-3210 | DOI:10.1090/proc/13467 | Zbl:1428.11196
- Asymptotics for Number Fields and Class Groups, Directions in Number Theory, Volume 3 (2016), p. 291 | DOI:10.1007/978-3-319-30976-7_10
- Counting discriminants of number fields, Journal de Théorie des Nombres de Bordeaux, Volume 18 (2006) no. 3, pp. 573-593 | DOI:10.5802/jtnb.559 | Zbl:1193.11109
Cité par 5 documents. Sources : Crossref, zbMATH