On considère l’équation différentielle non linéaire singulièrement perturbée
We consider a singularity perturbed nonlinear differential equation
Keywords: resonance, canard solution, overstability, singular perturbation
Mot clés : résonance, solution du canard, surstabilité, perturbation singulière
@article{AIF_2003__53_1_227_0, author = {Fruchard, Augustin and Sch\"afke, Reinhard}, title = {Overstability and resonance}, journal = {Annales de l'Institut Fourier}, pages = {227--264}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {1}, year = {2003}, doi = {10.5802/aif.1943}, zbl = {1037.34047}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1943/} }
TY - JOUR AU - Fruchard, Augustin AU - Schäfke, Reinhard TI - Overstability and resonance JO - Annales de l'Institut Fourier PY - 2003 SP - 227 EP - 264 VL - 53 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1943/ DO - 10.5802/aif.1943 LA - en ID - AIF_2003__53_1_227_0 ER -
%0 Journal Article %A Fruchard, Augustin %A Schäfke, Reinhard %T Overstability and resonance %J Annales de l'Institut Fourier %D 2003 %P 227-264 %V 53 %N 1 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1943/ %R 10.5802/aif.1943 %G en %F AIF_2003__53_1_227_0
Fruchard, Augustin; Schäfke, Reinhard. Overstability and resonance. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 227-264. doi : 10.5802/aif.1943. https://www.numdam.org/articles/10.5802/aif.1943/
[1] Boundary layer Problems Exhibiting Resonance, Studies in Appl. Math., Volume 49 (1970) no. 3, pp. 277-295 | MR | Zbl
[2] Asymptotic expansions of canards with poles. Application to the stationary unidimensional Schrödinger equation, Bull. Belgian Math. Soc., suppl. `Nonstandard Analysis' (1996), pp. 71-90 | MR | Zbl
[3] Enlacements de canards, Volume 72 (1990), pp. 63-91 | Numdam | Zbl
[4] Chasse au canard, Collect. Math., Volume 31 (1981) no. 1-3, pp. 37-119 | Zbl
[5] Solutions surstables des équations différentielles complexes lentes-rapides à point tournant, Ann. Fac. Sci. Toulouse, Volume VII (1998) no. 4, pp. 1-32 | Numdam | MR | Zbl
[6] Overstability : toward a global study, C.R. Acad. Sci. Paris, série I, Volume 326 (1998), pp. 873-878 | MR | Zbl
[7] Bifurcation du portrait de phase pour des équations différentielles linéaires du second ordre ayant pour type l'équation d'Hermite (1981) (Thèse de Doctorat d'Etat, Strasbourg)
[8] Champs lents-rapides complexes à une dimension lente, Ann. Sci. École Norm. Sup., 4e série, Volume 26 (1993), pp. 149-173 | Numdam | MR | Zbl
[9] Gevrey solutions of singularly perturbed differential equations, J. reine angew. Math., Volume 518 (2000), pp. 95-129 | DOI | MR | Zbl
[10] Resonance in a boundary value problem of singular perturbation type, Studies in Appl. Math., Volume 52 (1973), pp. 129-139 | MR | Zbl
[11] The nature of resonance in a singular perturbation problem of turning point type, SIAM J. Math. Anal., Volume 11 (1980), pp. 1-22 | DOI | MR | Zbl
[12] Méthode du plan d'observabilité (1981) Thèse de Doctorat d'Etat, prépublication IRMA, 7, rue René Descartes, 67084 Strasbourg Cedex (France)
[13] An introduction to complex analysis in several variables, Elsevier Science B.V., Amsterdam, 1966, revised 1973, 1990
[14] A geometric approach to boundary layer problems exhibiting resonance, SIAM. J. Appl. Math., Volume 37 (1979) no. 2, pp. 436-458 | DOI | MR | Zbl
[15] Boundary value problems with a turning point, Studies in Appl. Math., Volume 51 (1972), pp. 261-275 | MR | Zbl
[16] The sufficiency of Matkowsky-condition in the problem of resonance, Trans. Amer. Math. Soc., Volume 278 (1983) no. 2, pp. 647-670 | DOI | MR | Zbl
[17] On boundary layer problems exhibiting resonance, SIAM Review, Volume 17 (1975), pp. 82-100 | DOI | MR | Zbl
[18] Sufficient conditions for Ackerberg-O'Malley resonance, SIAM J. Math. Anal., Volume 9 (1978), pp. 328-355 | DOI | MR | Zbl
[19] A theorem concerning uniform simplification at a transition point and the problem of resonance, SIAM J. Math. Anal., Volume 12 (1981), pp. 653-668 | DOI | MR | Zbl
[20] Asymptotic expansions for ordinary differential equations, Interscience, New York, 1965 | MR | Zbl
[21] Linear Turning Point Theory, Springer, New York, 1985 | MR | Zbl
Cité par Sources :