On démontre que pour chaque entier
We prove that for each integer
Keywords: group action, nilpotent group, fixed point
Mot clés : action de groupe, groupe nilpotent, point fixe
@article{AIF_2002__52_4_1075_0, author = {Druck, Suely and Fang, Fuquan and Firmo, Sebasti\~ao}, title = {Fixed points of discrete nilpotent group actions on $S^2$}, journal = {Annales de l'Institut Fourier}, pages = {1075--1091}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {4}, year = {2002}, doi = {10.5802/aif.1912}, mrnumber = {1926674}, zbl = {1005.37019}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1912/} }
TY - JOUR AU - Druck, Suely AU - Fang, Fuquan AU - Firmo, Sebastião TI - Fixed points of discrete nilpotent group actions on $S^2$ JO - Annales de l'Institut Fourier PY - 2002 SP - 1075 EP - 1091 VL - 52 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1912/ DO - 10.5802/aif.1912 LA - en ID - AIF_2002__52_4_1075_0 ER -
%0 Journal Article %A Druck, Suely %A Fang, Fuquan %A Firmo, Sebastião %T Fixed points of discrete nilpotent group actions on $S^2$ %J Annales de l'Institut Fourier %D 2002 %P 1075-1091 %V 52 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1912/ %R 10.5802/aif.1912 %G en %F AIF_2002__52_4_1075_0
Druck, Suely; Fang, Fuquan; Firmo, Sebastião. Fixed points of discrete nilpotent group actions on $S^2$. Annales de l'Institut Fourier, Tome 52 (2002) no. 4, pp. 1075-1091. doi : 10.5802/aif.1912. https://www.numdam.org/articles/10.5802/aif.1912/
[1] Un point fixe commun pour des difféomorphismes commutants de
[2] Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology, Volume 29 (1989) no. 1, pp. 101-126 | DOI | MR | Zbl
[3] Geometric Theory of Foliations, Birkhäuser, Boston, 1985 | MR | Zbl
[4] Fixed points of discrete nilpotent groups actions on surfaces (In preparation)
[5] Transformations groups and natural bundles, Proc. London Math. Soc., Volume 38 (1979), pp. 219-236 | DOI | MR | Zbl
[6] Sur les groupes engendrés par des difféomorphismes proche de l'identité, Bol. Soc. Bras. Mat., Volume 24 (1993) no. 2, pp. 137-178 | DOI | MR | Zbl
[7] Feuilletages - Études géométriques, Birkhäuser, 1991 | MR | Zbl
[8] Commuting homeomorphisms of
[9] Commuting vector fields on 2-manifolds, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 366-368 | DOI | MR | Zbl
[10] Commuting vector fields on
[11] Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv., Volume 39 (1964), pp. 97-110 | DOI | EuDML | MR | Zbl
[12] Fixed points of Lie group actions on surfaces, Ergod. Th \& Dynam. Sys., Volume 6 (1986), pp. 149-161 | MR | Zbl
[13] Sur les courbes définis par une équation différentielle, J. Math. Pures Appl., Volume 4 (1885) no. 1, pp. 167-244 | EuDML | JFM | Numdam
[14] Discrete subgroups of Lie groups, Springer-Verlag, Berlin, New York, 1972 | MR | Zbl
[15] An introduction to the theory of groups, Springer-Verlag, 1995 | MR | Zbl
- Global fixed points for nilpotent actions on the torus, Ergodic Theory and Dynamical Systems, Volume 40 (2020) no. 12, p. 3339 | DOI:10.1017/etds.2019.43
- Any Baumslag–Solitar action on surfaces with a pseudo-Anosov element has a finite orbit, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 12, p. 3353 | DOI:10.1017/etds.2018.23
- Fixed points of nilpotent actions on, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 1, p. 173 | DOI:10.1017/etds.2014.58
- Fixed points for nilpotent actions on the plane and the Cartwright–Littlewood theorem, Mathematische Zeitschrift, Volume 279 (2015) no. 3-4, p. 849 | DOI:10.1007/s00209-014-1396-1
- Actions of Baumslag-Solitar groups on surfaces, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 5, p. 1945 | DOI:10.3934/dcds.2013.33.1945
- Des points fixes communs pour des difféomorphismes de qui commutent et préservent une mesure de probabilité, Journal of the Institute of Mathematics of Jussieu, Volume 12 (2013) no. 4, p. 821 | DOI:10.1017/s1474748012000898
- Rigidity of trivial actions of abelian-by-cyclic groups, Proceedings of the American Mathematical Society, Volume 138 (2009) no. 4, p. 1395 | DOI:10.1090/s0002-9939-09-10173-9
- Fixed points of abelian actions on S2, Ergodic Theory and Dynamical Systems, Volume 27 (2007) no. 5, p. 1557 | DOI:10.1017/s0143385706001088
- A note on commuting diffeomorphisms on surfaces, Nonlinearity, Volume 18 (2005) no. 4, p. 1511 | DOI:10.1088/0951-7715/18/4/005
Cité par 9 documents. Sources : Crossref