Fixed points of discrete nilpotent group actions on S2
[Points fixes d’actions des groupes nilpotents discrets sur S2]
Annales de l'Institut Fourier, Tome 52 (2002) no. 4, pp. 1075-1091.

On démontre que pour chaque entier k2 il existe un voisinage ouvert 𝒱k de l’application identité de la 2-sphère, pour la C1 topologie, tel que : si GDiff1(S2) est un sous-groupe nilpotent à longueur de nilpotence k, engendré par une famille quelconque d’éléments de 𝒱k, alors l’action naturelle de G sur S2 a un point fixe. De plus, en présence d’une orbite finie cette action a au moins deux points fixes.

We prove that for each integer k2 there is an open neighborhood 𝒱k of the identity map of the 2-sphere S2, in C1 topology such that: if G is a nilpotent subgroup of Diff1(S2) with length k of nilpotency, generated by elements in 𝒱k, then the natural G-action on S2 has nonempty fixed point set. Moreover, the G-action has at least two fixed points if the action has a finite nontrivial orbit.

DOI : 10.5802/aif.1912
Classification : 37B05, 37C25, 37C85
Keywords: group action, nilpotent group, fixed point
Mot clés : action de groupe, groupe nilpotent, point fixe
Druck, Suely  ; Fang, Fuquan 1 ; Firmo, Sebastião 2

1 Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)
2 Nankai Institute of Mathematics, Tianjin 300071 (Rép. Pop. Chine) et Universidade Federal Fluminense, Instituto de Matematica, Rua Mário Santos Braga s/n, Valonguinho, 24020-140 Niterói RJ (Brésil)
@article{AIF_2002__52_4_1075_0,
     author = {Druck, Suely and Fang, Fuquan and Firmo, Sebasti\~ao},
     title = {Fixed points of discrete nilpotent group actions on $S^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {1075--1091},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {4},
     year = {2002},
     doi = {10.5802/aif.1912},
     mrnumber = {1926674},
     zbl = {1005.37019},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1912/}
}
TY  - JOUR
AU  - Druck, Suely
AU  - Fang, Fuquan
AU  - Firmo, Sebastião
TI  - Fixed points of discrete nilpotent group actions on $S^2$
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1075
EP  - 1091
VL  - 52
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1912/
DO  - 10.5802/aif.1912
LA  - en
ID  - AIF_2002__52_4_1075_0
ER  - 
%0 Journal Article
%A Druck, Suely
%A Fang, Fuquan
%A Firmo, Sebastião
%T Fixed points of discrete nilpotent group actions on $S^2$
%J Annales de l'Institut Fourier
%D 2002
%P 1075-1091
%V 52
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1912/
%R 10.5802/aif.1912
%G en
%F AIF_2002__52_4_1075_0
Druck, Suely; Fang, Fuquan; Firmo, Sebastião. Fixed points of discrete nilpotent group actions on $S^2$. Annales de l'Institut Fourier, Tome 52 (2002) no. 4, pp. 1075-1091. doi : 10.5802/aif.1912. https://www.numdam.org/articles/10.5802/aif.1912/

[1] C. Bonatti Un point fixe commun pour des difféomorphismes commutants de S2, Annals of Math., Volume 129 (1989), pp. 61-69 | DOI | MR | Zbl

[2] C. Bonatti Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology, Volume 29 (1989) no. 1, pp. 101-126 | DOI | MR | Zbl

[3] C. Camacho; A. Lins Neto Geometric Theory of Foliations, Birkhäuser, Boston, 1985 | MR | Zbl

[4] S. Druck; F. Fang; S. Firmo Fixed points of discrete nilpotent groups actions on surfaces (In preparation)

[5] D.B.A. Epstein; W.P. Thurston Transformations groups and natural bundles, Proc. London Math. Soc., Volume 38 (1979), pp. 219-236 | DOI | MR | Zbl

[6] E. Ghys Sur les groupes engendrés par des difféomorphismes proche de l'identité, Bol. Soc. Bras. Mat., Volume 24 (1993) no. 2, pp. 137-178 | DOI | MR | Zbl

[7] C. Godbillon Feuilletages - Études géométriques, Birkhäuser, 1991 | MR | Zbl

[8] M. Handel Commuting homeomorphisms of S2, Topology, Volume 31 (1992), pp. 293-303 | DOI | MR | Zbl

[9] E. Lima Commuting vector fields on 2-manifolds, Bull. Amer. Math. Soc., Volume 69 (1963), pp. 366-368 | DOI | MR | Zbl

[10] E. Lima Commuting vector fields on S2, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 138-141 | MR | Zbl

[11] E. Lima Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv., Volume 39 (1964), pp. 97-110 | DOI | EuDML | MR | Zbl

[12] J.F. Plante Fixed points of Lie group actions on surfaces, Ergod. Th \& Dynam. Sys., Volume 6 (1986), pp. 149-161 | MR | Zbl

[13] H. Poincaré Sur les courbes définis par une équation différentielle, J. Math. Pures Appl., Volume 4 (1885) no. 1, pp. 167-244 | EuDML | JFM | Numdam

[14] M. Raghunathan Discrete subgroups of Lie groups, Springer-Verlag, Berlin, New York, 1972 | MR | Zbl

[15] J. Rotman An introduction to the theory of groups, Springer-Verlag, 1995 | MR | Zbl

  • FIRMO, S.; RIBÓN, J. Global fixed points for nilpotent actions on the torus, Ergodic Theory and Dynamical Systems, Volume 40 (2020) no. 12, p. 3339 | DOI:10.1017/etds.2019.43
  • GUELMAN, NANCY; LIOUSSE, ISABELLE Any Baumslag–Solitar action on surfaces with a pseudo-Anosov element has a finite orbit, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 12, p. 3353 | DOI:10.1017/etds.2018.23
  • RIBÓN, JAVIER Fixed points of nilpotent actions on, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 1, p. 173 | DOI:10.1017/etds.2014.58
  • Firmo, S.; Ribón, J.; Velasco, J. Fixed points for nilpotent actions on the plane and the Cartwright–Littlewood theorem, Mathematische Zeitschrift, Volume 279 (2015) no. 3-4, p. 849 | DOI:10.1007/s00209-014-1396-1
  • Guelman, Nancy; Liousse, Isabelle Actions of Baumslag-Solitar groups on surfaces, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 5, p. 1945 | DOI:10.3934/dcds.2013.33.1945
  • Béguin, F.; Le Calvez, P.; Firmo, S.; Miernowski, T. Des points fixes communs pour des difféomorphismes de qui commutent et préservent une mesure de probabilité, Journal of the Institute of Mathematics of Jussieu, Volume 12 (2013) no. 4, p. 821 | DOI:10.1017/s1474748012000898
  • McCarthy, Anne Rigidity of trivial actions of abelian-by-cyclic groups, Proceedings of the American Mathematical Society, Volume 138 (2009) no. 4, p. 1395 | DOI:10.1090/s0002-9939-09-10173-9
  • FRANKS, JOHN; HANDEL, MICHAEL; PARWANI, KAMLESH Fixed points of abelian actions on S2, Ergodic Theory and Dynamical Systems, Volume 27 (2007) no. 5, p. 1557 | DOI:10.1017/s0143385706001088
  • Firmo, S A note on commuting diffeomorphisms on surfaces, Nonlinearity, Volume 18 (2005) no. 4, p. 1511 | DOI:10.1088/0951-7715/18/4/005

Cité par 9 documents. Sources : Crossref