Soit
Let
Keywords: deformation quantization, flag manifold, unitary representation
Mot clés : quantification par déformation, variété de drapeaux, représentation unitaire
@article{AIF_2002__52_3_881_0, author = {Brylinski, Ranee}, title = {Equivariant deformation quantization for the cotangent bundle of a flag manifold}, journal = {Annales de l'Institut Fourier}, pages = {881--897}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {3}, year = {2002}, doi = {10.5802/aif.1905}, mrnumber = {1907391}, zbl = {1010.53067}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1905/} }
TY - JOUR AU - Brylinski, Ranee TI - Equivariant deformation quantization for the cotangent bundle of a flag manifold JO - Annales de l'Institut Fourier PY - 2002 SP - 881 EP - 897 VL - 52 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1905/ DO - 10.5802/aif.1905 LA - en ID - AIF_2002__52_3_881_0 ER -
%0 Journal Article %A Brylinski, Ranee %T Equivariant deformation quantization for the cotangent bundle of a flag manifold %J Annales de l'Institut Fourier %D 2002 %P 881-897 %V 52 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1905/ %R 10.5802/aif.1905 %G en %F AIF_2002__52_3_881_0
Brylinski, Ranee. Equivariant deformation quantization for the cotangent bundle of a flag manifold. Annales de l'Institut Fourier, Tome 52 (2002) no. 3, pp. 881-897. doi : 10.5802/aif.1905. https://www.numdam.org/articles/10.5802/aif.1905/
[AB1] Exotic Differential Operators on Complex Minimal Nilpotent Orbits, Advances in Geometry (Progress in Mathematics), Volume Vol. 172 (1998), pp. 19-51 | Zbl
[AB2] Non-Local Equivariant Star Product on the Minimal Nilpotent Orbit (e-print. To appear in Adv. Math., math.QA/0010257 v2) | MR | Zbl
[B] Non-Locality of Equivariant Star Products on
[B] Non-Locality of Equivariant Star Products on
[BKo] Nilpotent orbits, normality and Hamiltonian group actions, Jour. Amer. Math. Soc., Volume 7 (1994), pp. 269-298 | MR | Zbl
[BoBr] Differential operators on homogeneous spaces I. Irreducibility of the associated variety for annihilators of induced modules., Invent. Math, Volume 69 (1982), pp. 437-476 | MR | Zbl
[C-BD] Sur les représentations induites des groupes semi-simples complexes, Comp. Math, Volume 34 (1977), pp. 307-336 | Numdam | MR | Zbl
[CG] An algebraic construction of
[DLO] Conformally equivariant quantization: existence and uniqueness, Ann. Inst. Fourier, Volume 49 (1999) no. 6, pp. 1999-2029 | DOI | Numdam | MR | Zbl
[KP] Closures of conjugacy classes of matrices are normal, Inv. Math, Volume 53 (1979), pp. 227-247 | DOI | MR | Zbl
[LO] Projectively equivariant symbol calculus, Letters in Math. Phys, Volume 49 (1999), pp. 173-196 | DOI | MR | Zbl
[V] Unitarizability of a certain series of representations, Ann. Math., Volume 120 (1984), pp. 141-187 | DOI | MR | Zbl
Cité par Sources :