Soit la variété jacobienne de la courbe modulaire associée à et soit l’autre variété associée à . Nous étudions comme un module de Hecke et de Galois. On trouve une relation entre une matrice de périodes -adiques et la variation infinitésimale de l’opérateur .
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.
Keywords: modular curve, $p$-adic periods, Hecke operators
Mot clés : courbe modulaire, périodes $p$-adiques, opérateurs de Hecke
@article{AIF_2002__52_1_1_0, author = {Goldberger, Assaf and Shalit, Ehud de}, title = {Tamely ramified {Hida} theory}, journal = {Annales de l'Institut Fourier}, pages = {1--45}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {1}, year = {2002}, doi = {10.5802/aif.1875}, mrnumber = {1881569}, zbl = {1048.11043}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1875/} }
TY - JOUR AU - Goldberger, Assaf AU - Shalit, Ehud de TI - Tamely ramified Hida theory JO - Annales de l'Institut Fourier PY - 2002 SP - 1 EP - 45 VL - 52 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1875/ DO - 10.5802/aif.1875 LA - en ID - AIF_2002__52_1_1_0 ER -
Goldberger, Assaf; Shalit, Ehud de. Tamely ramified Hida theory. Annales de l'Institut Fourier, Tome 52 (2002) no. 1, pp. 1-45. doi : 10.5802/aif.1875. http://www.numdam.org/articles/10.5802/aif.1875/
[ALe] Hecke operators on , Math. Annalen, Volume 185 (1970), pp. 134-160 | DOI | MR | Zbl
[ALi] Twists of newforms and pseudo-eigenvalues of W-operators, Inv. Math., Volume 43 (1978), pp. 221-244 | DOI | MR | Zbl
[B] Abelian varieties from the rigid-analytic viewpoint, Barsotti Symposium in Algebraic Geometry (1994), pp. 51-63 | Zbl
[BLR] Néron models, Ergebnisse der Math., 3 folge, 21, Springer, 1990 | MR | Zbl
[DR] Schémas de modules de courbes elliptiques, LNM, 349, Springer, 1973 | MR | Zbl
[dS1] On certain Galois representations related to the modular curve , Compositio Math., Volume 95 (1995), pp. 69-100 | Numdam | MR | Zbl
[dS2] -adic periods and modular symbols of elliptic curves of prime conductor, Inv. Math., Volume 121 (1995), pp. 225-255 | DOI | MR | Zbl
[dS3] Néron models and p-adic uniformization of generalized Jacobians (In preparation)
[E] L'action de l'algebre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est ``Eisenstein'', Astérisque, Volume 196-197 (1991), pp. 59-70 | MR | Zbl
[GS] -adic -functions and -adic periods of modular forms, Inv. Math., Volume 111 (1993), pp. 407-447 | DOI | MR | Zbl
[H] Galois representations into attached to ordinary cusp forms, Inv. Math., Volume 85 (1986), pp. 545-613 | DOI | MR | Zbl
[KM] Arithmetic moduli of elliptic curves, Ann. Math. Studies, 108, Princeton, 1985 | MR | Zbl
[M] Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S, Volume 47 (1977), pp. 33-186 | Numdam | MR | Zbl
[MT] Refined conjectures of "Birch and Swinnerton-Dyer type", Duke Math. J., Volume 54 (1987), pp. 711-750 | MR | Zbl
[MTT] On p-adic analogues of the conjectures of Birch and Swinerton-Dyer, Inv. Math., Volume 84 (1986), pp. 1-48 | DOI | MR | Zbl
[MW1] Class fields of abelian extensions of , Inv. Math., Volume 76 (1984), pp. 179-330 | DOI | MR | Zbl
[MW2] On -adic analytic families of Galois representations, Compositio Math., Volume 59 (1986), pp. 231-264 | Numdam | MR | Zbl
[Ri] Congruence relations between modular forms, Proc. International Congress of Math., Volume 17 (1983), pp. 503-514 | Zbl
[SGA7] Modéles de Néron et monodromie (exposé IX), SGA 71 (LNM), Volume 288 (1972) | Zbl
[W] Modular elliptic curves and Fermat's last theorem, Ann. of Math., Volume 141 (1995), pp. 443-551 | DOI | MR | Zbl
Cité par Sources :