Quantitative estimates for the Green function and an application to the Bergman metric
Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1205-1228.

Soit Dn un domaine pseudoconvexe qui admet une fonction plurisousharmonique d’exhaustion et Hölder continue. On note GD(.,.) la fonction pluricomplexe de Green, pour D. Dans cet article nous allons donner pour un ensemble compact KD une borne supérieure quantitative pour supzK|GD(z,w)|, à l’aide de la distance au bord de K et du point w. Comme application nous pouvons démontrer que, dans un domaine régulier D (au sens de Diederich-Fornaess), la métrique de Bergman différentielle BD(w;X) tend vers l’infini, pour Xn/{O}, si wD tend vers un point du bord de D. De plus, nous démontrons que l’ordre de croissance de BD(W;.), quand w tend vers un point z0D de type fini de façon non tangentielle, est toujours supérieur à 1N, où N est l’ordre d’extensibilité pseudoconvexe de D en z0.

Let Dn be a bounded pseudoconvex domain that admits a Hölder continuous plurisubharmonic exhaustion function. Let its pluricomplex Green function be denoted by GD(.,.). In this article we give for a compact subset KD a quantitative upper bound for the supremum supzK|GD(z,w)| in terms of the boundary distance of K and w. This enables us to prove that, on a smooth bounded regular domain D (in the sense of Diederich-Fornaess), the Bergman differential metric BD(w;X) tends to infinity, for Xn/{O}, when wD tends to a boundary point. Furthermore, we prove that the order of growth of BD(W;.) under nontangential approach of wD to a point z0D of finite type, can be estimated from below by 1N, where N denotes the order of pseudoconvex extendability of D at z0.

@article{AIF_2000__50_4_1205_0,
     author = {Diederich, Klas and Herbort, Gregor},
     title = {Quantitative estimates for the {Green} function and an application to the {Bergman} metric},
     journal = {Annales de l'Institut Fourier},
     pages = {1205--1228},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {4},
     year = {2000},
     doi = {10.5802/aif.1790},
     mrnumber = {2001k:32058},
     zbl = {0960.32022},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1790/}
}
TY  - JOUR
AU  - Diederich, Klas
AU  - Herbort, Gregor
TI  - Quantitative estimates for the Green function and an application to the Bergman metric
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 1205
EP  - 1228
VL  - 50
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1790/
DO  - 10.5802/aif.1790
LA  - en
ID  - AIF_2000__50_4_1205_0
ER  - 
%0 Journal Article
%A Diederich, Klas
%A Herbort, Gregor
%T Quantitative estimates for the Green function and an application to the Bergman metric
%J Annales de l'Institut Fourier
%D 2000
%P 1205-1228
%V 50
%N 4
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1790/
%R 10.5802/aif.1790
%G en
%F AIF_2000__50_4_1205_0
Diederich, Klas; Herbort, Gregor. Quantitative estimates for the Green function and an application to the Bergman metric. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1205-1228. doi : 10.5802/aif.1790. https://www.numdam.org/articles/10.5802/aif.1790/

[1] Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci., 41 (1993), 151-157. | MR | Zbl

[2] Z. Blocki, P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J., 151 (1998), 221-225. | MR | Zbl

[3] M. Carlehed, Comparison of the pluricomplex and the classical Green functions, Michigan Math. J., 45 (1998), 399-407. | MR | Zbl

[4] M. Carlehed, U. Cegrell, F. Wikström, Jensen measures, hyperconvexity, and boundary behavior of the pluricomplex Green's function, Ann. Pol. Math., 71 (1999), 87-103. | Zbl

[5] J. P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., 194 (1987), 519-564. | MR | Zbl

[6] K. Diederich, J. E. Fornæss, Pseudoconvex domains : Bounded strictly plurisubharmonic exhaustion functions, Invent. Math., 39 (1977), 129-141. | MR | Zbl

[7] K. Diederich, J. E. Fornæss, Pseudoconvex domains with real analytic boundary, Ann. Math., 107 (1978), 371-384. | MR | Zbl

[8] K. Diederich, G. Herbort, Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results, J. Geom. Analysis 3 (1993), 237-267. | MR | Zbl

[9] K. Diederich, G. Herbort, Pseudoconvex domains of semiregular type, Contributions to Complex Analysis (H. Skoda, J. M. Trépreau, ed.), Aspects of Mathematics, vol. E 26, Vieweg-Verlag, 1994, pp. 127-162. | MR | Zbl

[10] K. Diederich, T. Ohsawa, An estimate on the Bergman distance on pseudoconvex domains, Ann. of Math., 141 (1995), 181-190. | MR | Zbl

[11] I. Graham, Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in ℂn with smooth boundary, Trans. Amer. Math. Soc., 207 (1975), 219-240. | MR | Zbl

[12] G. Herbort, The Bergman metric on hyperconvex domains, Math. Zeit., 232 (1999), 183-196. | MR | Zbl

[13] G. Herbort, On the pluricomplex Green function on pseudoconvex domains with a smooth boundary, Internat. J. of Math. (To appear). | Zbl

[14] L. Hörmander, An introduction to complex analysis in several variables, North Holland, Amsterdam, 2nd ed. ed., 1973. | Zbl

[15] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240. | Numdam | MR | Zbl

  • Miyachi, Hideki Pluripotential theory on Teichmüller space I: Pluricomplex Green function, Conformal Geometry and Dynamics of the American Mathematical Society, Volume 23 (2019) no. 13, p. 221 | DOI:10.1090/ecgd/340
  • Thuc, Phung Trong A note on L2-boundary integrals of the Bergman kernel, International Journal of Mathematics, Volume 29 (2018) no. 14, p. 1871001 | DOI:10.1142/s0129167x18710015
  • Dinew, Żywomir On the completeness of a metric related to the Bergman metric, Monatshefte für Mathematik, Volume 172 (2013) no. 3-4, p. 277 | DOI:10.1007/s00605-013-0501-6
  • Coman, Dan; Guedj, Vincent Quasiplurisubharmonic Green functions, Journal de Mathématiques Pures et Appliquées, Volume 92 (2009) no. 5, p. 456 | DOI:10.1016/j.matpur.2009.05.010
  • Błocki, Zbigniew The Bergman metric and the pluricomplex Green function, Transactions of the American Mathematical Society, Volume 357 (2005) no. 7, p. 2613 | DOI:10.1090/s0002-9947-05-03738-4
  • Herbort, Gregor Localization lemmas for the Bergman metric at plurisubharmonic peak points, Nagoya Mathematical Journal, Volume 171 (2003), p. 107 | DOI:10.1017/s0027763000025538

Cité par 6 documents. Sources : Crossref